На нашем сайте вы можете читать онлайн «Искусственный интеллект в здравоохранении». Эта электронная книга доступна бесплатно и представляет собой целую полную версию без сокращений. Кроме того, доступна возможность слушать аудиокнигу, скачать её через торрент в формате fb2 или ознакомиться с кратким содержанием. Жанр книги — Медицина. Кроме того, ниже доступно описание произведения, предисловие и отзывы читателей. Регулярные обновления библиотеки и улучшения функционала делают наше сообщество идеальным местом для любителей книг.
Искусственный интеллект в здравоохранении

Автор
Жанр
Дата выхода
26 апреля 2024
Краткое содержание книги Искусственный интеллект в здравоохранении, аннотация автора и описание
Прежде чем читать книгу целиком, ознакомьтесь с предисловием, аннотацией, описанием или кратким содержанием к произведению Искусственный интеллект в здравоохранении. Предисловие указано в том виде, в котором его написал автор (Коллектив авторов) в своем труде. Если нужная информация отсутствует, оставьте комментарий, и мы постараемся найти её для вас. Обратите внимание: Читатели могут делиться своими отзывами и обсуждениями, что поможет вам глубже понять книгу. Не забудьте и вы оставить свое впечатие о книге в комментариях внизу страницы.
Описание книги
В учебном пособии через историческую справку о создании и развитии различных технологий искусственного интеллекта, анализ организационных вопросов правового регулирования оборота данных технологий как медицинского изделия и юридической ответственности медицинских работников за решения, принятые с использованием искусственного интеллекта, раскрываются актуальные проблемы, связанные с искусственным интеллектом. Отдельно рассматривается этическая сторона внедрения искусственного интеллекта в медицинскую деятельность, а также кейсы современных мировых разработок в сфере искусственного интеллекта для медицинского применения и опыта их применения.
Издание предназначено для студентов медицинских вузов и студентов юридических факультетов, изучающих медицинское и фармацевтическое право.
В формате PDF A4 сохранен издательский макет книги.
Искусственный интеллект в здравоохранении читать онлайн полную книгу - весь текст целиком бесплатно
Перед вами текст книги, разбитый на страницы для удобства чтения. Благодаря системе сохранения последней прочитанной страницы, вы можете бесплатно читать онлайн книгу Искусственный интеллект в здравоохранении без необходимости искать место, на котором остановились. А еще, у нас можно настроить шрифт и фон для комфортного чтения. Наслаждайтесь любимыми книгами в любое время и в любом месте.
Текст книги
Клиническая валидация (clinical validation) – подтверждение способности системы ИИ выдавать клинически значимые выходные данные, связанные с ее целевым использованием в рамках установленного изготовителем функционального назначения.
В этом случае необходимо представление данных согласно частоте их встречаемости, заболеваемости, распространенности в популяции. При проведении клинической валидации следует использовать верифицированный набор данных. Характеристики наборов данных (размерность, разреженность, баланс, распределение классов и др.
Под размерностью понимается количество атрибутов, которые имеют объекты в наборе данных (например, значение артериального давления, масса тела пациента, уровень холестерина и др.). Наборы данных с высокой размерностью (с большим количеством атрибутов) выдвигают повышенные требования к алгоритмам системы ИИ, допустимому размеру таких наборов, а также к вычислительным ресурсам для их обработки. В зависимости от поставленной цели и дизайна исследования допустимо обоснованное снижение размерности набора данных, в частности, за счет кластеризации данных либо группировки взаимосвязанных по какому-либо признаку атрибутов в объединенные категории.
Высокий уровень разреженности (отсутствия) данных способен существенно осложнить для системы ИИ задачу поиска и категоризации объектов интереса, что нужно учитывать в зависимости от поставленной задачи.
Сбалансированный набор данных должен содержать одинаковое количество примеров различных категорий (классов) объектов интереса.
Важным этапом подготовки данных является деидентификация (обезличивание). Должны быть удалены любые персональные данные. В случае необходимости возможно их изменение, например замена даты рождения на возраст.
Подготовленные наборы данных могут быть структурированы посредством выделения признаков в соответствии с поставленной задачей.
Фильтрация набора данных позволяет исключить данные, не соответствующие заданным параметрам (например, смазанные изображения), повысив их качество.










