На нашем сайте вы можете читать онлайн «Физика для «чайников». Несерьезное пособие». Эта электронная книга доступна бесплатно и представляет собой целую полную версию без сокращений. Кроме того, доступна возможность слушать аудиокнигу, скачать её через торрент в формате fb2 или ознакомиться с кратким содержанием. Жанр книги — Физика. Кроме того, ниже доступно описание произведения, предисловие и отзывы читателей. Регулярные обновления библиотеки и улучшения функционала делают наше сообщество идеальным местом для любителей книг.
Физика для «чайников». Несерьезное пособие

Автор
Жанр
Дата выхода
11 января 2018
Краткое содержание книги Физика для «чайников». Несерьезное пособие, аннотация автора и описание
Прежде чем читать книгу целиком, ознакомьтесь с предисловием, аннотацией, описанием или кратким содержанием к произведению Физика для «чайников». Несерьезное пособие. Предисловие указано в том виде, в котором его написал автор (Андрей «Dront» Ильин) в своем труде. Если нужная информация отсутствует, оставьте комментарий, и мы постараемся найти её для вас. Обратите внимание: Читатели могут делиться своими отзывами и обсуждениями, что поможет вам глубже понять книгу. Не забудьте и вы оставить свое впечатие о книге в комментариях внизу страницы.
Описание книги
«Как уверяют физики, в сказку мы не попали», — примерно так прозвучали для многих первые слова учителя по важному и в то же время непростому школьному предмету. Книга «Физика для „чайников“» способна стать подспорьем для тех, кто не смог разобраться в «пресловутых формулах и вычислениях». Книгу можно использовать как «объяснялку» к любому существующему учебнику. Множество аналогий, приводимых автором, и непринуждённый стиль повествования делают её и запоминающимся литературным произведением!
Физика для «чайников». Несерьезное пособие читать онлайн полную книгу - весь текст целиком бесплатно
Перед вами текст книги, разбитый на страницы для удобства чтения. Благодаря системе сохранения последней прочитанной страницы, вы можете бесплатно читать онлайн книгу Физика для «чайников». Несерьезное пособие без необходимости искать место, на котором остановились. А еще, у нас можно настроить шрифт и фон для комфортного чтения. Наслаждайтесь любимыми книгами в любое время и в любом месте.
Текст книги
А как тогда считать, например, расстояние между мордой лица и монитором? Откуда и докуда? Они же тоже размеры имеют, и из-за этого расстояние может быть разным!
Вопрос на засыпку: какое именно из указанных ниже расстояний брать для расчёта?
а) От кончика носа до экрана
б) От макушки до шарнира экрана
в) Откуда-нибудь из центра головы (можно ли посчитать, где он находится?..) до центра экрана (тот же вопрос)?..
Минута на размышление прошла. А теперь, внимание, правильный ответ: ни одно из них не подходит.
Хорошо, с расстоянием разобрались. Но вот вопрос, возникающий по здравому смыслу: почему тогда всё подряд друг к другу не липнет? Ответ простой. Сила притяжения есть, только она настолько маленькая, что не ощущается. Для примера: два бильярдных шара для игры в пул. Масса шара – 170 г (0.17 кг). Пускай они стоят совсем впритык. Диаметр шара составляет 5.
м. Получаем:
0.17.0.17/ (5.175.10
)
= 0.289.267806.25. Примерно будет равно 7.7396.10
кг
/м
. Это не в ньютонах! Потому что нужно ещё домножить на G. Немного выше я писал, что она составляет вот сколько: 6.67.10
Н.м
/кг
. Итого получается, сила составляет 51.623.10
Н, то есть примерно 5.
Н. В минус шестой степени. Это примерно полумиллинная долька!
Чтобы более наглядно: миллиметр в тысячу раз меньше метра. Есть такая единица длины – микрон, она в тысячу раз меньше миллиметра. Получается, что микрон – это и есть миллионная доля метра. Так вот, сила притяжения получится настолько же слабее одного ньютона, насколько половинка микрона меньше метра. Проще говоря, её действие просто незаметно. А если расстояние повысить ещё хотя бы на те же 5 сантиметров, то сила станет ещё в 4 раза слабее! (Расстояние получится примерно 10 см – то есть, оно больше наших бывших 5 в 2 раза.
Собственно, вся слабость силы на обычных предметах именно из-за этого маленького значения G.





