На нашем сайте вы можете читать онлайн «Физика для «чайников». Несерьезное пособие». Эта электронная книга доступна бесплатно и представляет собой целую полную версию без сокращений. Кроме того, доступна возможность слушать аудиокнигу, скачать её через торрент в формате fb2 или ознакомиться с кратким содержанием. Жанр книги — Физика. Кроме того, ниже доступно описание произведения, предисловие и отзывы читателей. Регулярные обновления библиотеки и улучшения функционала делают наше сообщество идеальным местом для любителей книг.
Физика для «чайников». Несерьезное пособие

Автор
Жанр
Дата выхода
11 января 2018
Краткое содержание книги Физика для «чайников». Несерьезное пособие, аннотация автора и описание
Прежде чем читать книгу целиком, ознакомьтесь с предисловием, аннотацией, описанием или кратким содержанием к произведению Физика для «чайников». Несерьезное пособие. Предисловие указано в том виде, в котором его написал автор (Андрей «Dront» Ильин) в своем труде. Если нужная информация отсутствует, оставьте комментарий, и мы постараемся найти её для вас. Обратите внимание: Читатели могут делиться своими отзывами и обсуждениями, что поможет вам глубже понять книгу. Не забудьте и вы оставить свое впечатие о книге в комментариях внизу страницы.
Описание книги
«Как уверяют физики, в сказку мы не попали», — примерно так прозвучали для многих первые слова учителя по важному и в то же время непростому школьному предмету. Книга «Физика для „чайников“» способна стать подспорьем для тех, кто не смог разобраться в «пресловутых формулах и вычислениях». Книгу можно использовать как «объяснялку» к любому существующему учебнику. Множество аналогий, приводимых автором, и непринуждённый стиль повествования делают её и запоминающимся литературным произведением!
Физика для «чайников». Несерьезное пособие читать онлайн полную книгу - весь текст целиком бесплатно
Перед вами текст книги, разбитый на страницы для удобства чтения. Благодаря системе сохранения последней прочитанной страницы, вы можете бесплатно читать онлайн книгу Физика для «чайников». Несерьезное пособие без необходимости искать место, на котором остановились. А еще, у нас можно настроить шрифт и фон для комфортного чтения. Наслаждайтесь любимыми книгами в любое время и в любом месте.
Текст книги
Ускорение – это скорость изменения скорости: отношение изменения скорости к промежутку времени, за которое это изменение произошло – опять-таки, при условии, что промежуток времени бесконечно мал (иначе говоря – стремится к нулю). Это также векторная величина, в общем случае может меняться. Единица измерения – метр на секунду в квадрате (м/с
). Частные случаи переменного движения – равноускоренное и равнозамедленное движение, по характеру отличаются лишь знаком ускорения, по модулю же оно будет постоянно в обоих случаях.
+ a.t, где v
– начальная скорость (с которой двигались в начальный момент времени t = 0), a – ускорение, t – время. Перемещение считается следующим образом: s = v
.t + a.t
/2.
Пони бегает по кругу. Ай, то есть, по окружности
Это всё было прямолинейное движение. То есть: когда беззаботно летим по шоссе, траектория наша является прямой линией, и всё хорошо. Но вот теперь мы въехали в город и едем по круглой площади.
Но здесь, опять-таки, есть случаи частные. Самый распространённый здесь – равномерное движение по окружности. При нём траектория – окружность, а скорость по модулю не меняется.
Потому, что при этом гораздо проще посчитать путь (это просто длина окружности). Раз. Второе – гораздо проще посмотреть, куда направлено ускорение. Тут оно называется заумным словом «центростремительное» – типа, когда едешь по кругу, невольно стремишься к центру. Как следует из названия, его «стрелочка» направлена к центру окружности. Скорость же при этом направлена по касательной к окружности (едешь-то как будто прямо).
То есть, по-русски. Когда ты едешь по кругу, то получается, что как будто всё время стремишься к центру: каждый момент поворачиваешь на какой-то маленький уголок, и эти повороты заставляет тебя ехать дальше не «абсолютно прямо», а «чуть криво», чтобы постоянно держать одно и то же расстояние от центра.





