На нашем сайте вы можете читать онлайн «Нейронные сети. Эволюция». Эта электронная книга доступна бесплатно и представляет собой целую полную версию без сокращений. Кроме того, доступна возможность слушать аудиокнигу, скачать её через торрент в формате fb2 или ознакомиться с кратким содержанием. Жанр книги — Знания и навыки, Учебная и научная литература, Прочая образовательная литература. Кроме того, ниже доступно описание произведения, предисловие и отзывы читателей. Регулярные обновления библиотеки и улучшения функционала делают наше сообщество идеальным местом для любителей книг.
Нейронные сети. Эволюция

Автор
Дата выхода
15 апреля 2018
Краткое содержание книги Нейронные сети. Эволюция, аннотация автора и описание
Прежде чем читать книгу целиком, ознакомьтесь с предисловием, аннотацией, описанием или кратким содержанием к произведению Нейронные сети. Эволюция. Предисловие указано в том виде, в котором его написал автор (Каниа Алексеевич Кан) в своем труде. Если нужная информация отсутствует, оставьте комментарий, и мы постараемся найти её для вас. Обратите внимание: Читатели могут делиться своими отзывами и обсуждениями, что поможет вам глубже понять книгу. Не забудьте и вы оставить свое впечатие о книге в комментариях внизу страницы.
Описание книги
Эта книга предназначена для всех, кто хочет разобраться в том, как устроены нейронные сети. Для тех читателей, кто хочет сам научиться программировать нейронные сети, без использования специализированных библиотек машинного обучения. Книга предоставляет возможность с нуля разобраться в сути работы искусственных нейронов и нейронных сетей, математических идей, лежащих в их основе, где от вас не требуется никаких специальных знаний, не выходящих за пределы школьного курса в области математики.
Нейронные сети. Эволюция читать онлайн полную книгу - весь текст целиком бесплатно
Перед вами текст книги, разбитый на страницы для удобства чтения. Благодаря системе сохранения последней прочитанной страницы, вы можете бесплатно читать онлайн книгу Нейронные сети. Эволюция без необходимости искать место, на котором остановились. А еще, у нас можно настроить шрифт и фон для комфортного чтения. Наслаждайтесь любимыми книгами в любое время и в любом месте.
Текст книги
Наилучший способ знакомства с объектами – это рассмотреть конкретный пример:
# класс объектов Сat (кошка)
class Сat:
# Кошки говорят – “Мяу!”
def says (self):
print (‘Мяу!’)
pass
pass
Запись class Сat – означает что создан класс Сat (кошка), а функция def says(), внутри класса – это метод класса Сat, который выполняет определенные действия связанные с этим классом. В нашем случае созданный нами метод says() выводит на экран – ‘Мяу!’.
Давайте на примере покажем, как создаются объекты класса и работают его методы.
classcat = Сat () #создание объекта classСat, класса Сat
classcat.says () #использование метода says (), объекта classСat
Методов в классе может содержаться так много, насколько это необходимо, для его описания. Кошка помимо того, что может говорить: “Мяу!”, обладает и рядом других важных параметров. К ним относятся цвет шерсти, цвет глаз, кличка, и так далее. И все это, можно описать при помощи методов в классе. Давайте опишем выше сказанное в Python:
Множеству объектов, можно присваивать одинаковый класс и эти объекты в свою очередь, будут обладать одинаковыми методами:
Чтобы получить более полное представление о возможностях объектов, давайте добавим в наш класс переменные, которые будут хранить специфические данные этих объектов, а также методы, позволяющие просматривать и изменять эти данные:
Давайте разбираться что же мы тут написали.
В любом классе можно определить функцию __init__(). Эта функция всегда вызывается, когда мы создаем реальный объект класса, с изначально заданными атрибутами. Атрибут – это переменная, которая относится к классу, в котором она определена. В нашем случае, при создании объекта, мы сразу можем указать его атрибуты – кличку и количество лет, которые сразу присваиваются этому объекту. Через созданный нами метод status(), мы можем вывести информацию о количестве лет и кличке нашего объекта.
ГЛАВА 3
Рождение искусственного нейрона
Моделирование нейрона как линейного классификатора
Настало время практически реализовать линейную классификацию. Для этого в Python смоделируем работу искусственного нейрона.





