На нашем сайте вы можете читать онлайн «Интеллектуальный анализ данных. Учебник». Эта электронная книга доступна бесплатно и представляет собой целую полную версию без сокращений. Кроме того, доступна возможность слушать аудиокнигу, скачать её через торрент в формате fb2 или ознакомиться с кратким содержанием. Жанр книги — Математика. Кроме того, ниже доступно описание произведения, предисловие и отзывы читателей. Регулярные обновления библиотеки и улучшения функционала делают наше сообщество идеальным местом для любителей книг.
Интеллектуальный анализ данных. Учебник

Автор
Жанр
Дата выхода
11 января 2023
Краткое содержание книги Интеллектуальный анализ данных. Учебник, аннотация автора и описание
Прежде чем читать книгу целиком, ознакомьтесь с предисловием, аннотацией, описанием или кратким содержанием к произведению Интеллектуальный анализ данных. Учебник. Предисловие указано в том виде, в котором его написал автор (Вадим Николаевич Шмаль) в своем труде. Если нужная информация отсутствует, оставьте комментарий, и мы постараемся найти её для вас. Обратите внимание: Читатели могут делиться своими отзывами и обсуждениями, что поможет вам глубже понять книгу. Не забудьте и вы оставить свое впечатие о книге в комментариях внизу страницы.
Описание книги
Sergey Pavlov, master Plekhanov Russian University of Economics. Vadim Shmal, Ph. D., associate professor Russian University of Transport (MIIT).
Интеллектуальный анализ данных. Учебник читать онлайн полную книгу - весь текст целиком бесплатно
Перед вами текст книги, разбитый на страницы для удобства чтения. Благодаря системе сохранения последней прочитанной страницы, вы можете бесплатно читать онлайн книгу Интеллектуальный анализ данных. Учебник без необходимости искать место, на котором остановились. А еще, у нас можно настроить шрифт и фон для комфортного чтения. Наслаждайтесь любимыми книгами в любое время и в любом месте.
Текст книги
Некоторые из этих факторов можно использовать для выявления процессов, которые могут быть аномальными. Многие параметры можно найти в системах, обеспечивающих характеристики процесса.
Изучение правила ассоциации
Изучение ассоциативных правил – это основанный на правилах метод машинного обучения для обнаружения интересных отношений между переменными в больших базах данных примеров. Эта техника вдохновлена слуховой системой, где мы изучаем правила ассоциации слухового стимула и только этого стимула.
Иногда при работе с набором данных мы не уверены, релевантны ли строки набора данных для задачи обучения, и если да, то какие. Мы можем захотеть пропустить те строки набора данных, которые не имеют значения. Следовательно, ассоциации обычно определяются неинтуитивными критериями, такими как порядок, в котором эти переменные появляются в последовательности примеров, или повторяющиеся значения в этих строках данных.
Этот проблематичный аспект изучения ассоциативных правил может быть устранен в виде алгоритма обнаружения аномалий.
В большом наборе данных пространство признаков может представлять область изображения как набор чисел, в котором каждый пиксель изображения имеет определенное количество пикселей. Характеристики изображения могут быть представлены в виде вектора, и мы можем поместить этот вектор в пространство признаков. Если пространство признака не пусто, признак будет числом пикселей в изображении, которые принадлежат определенному цвету.
Кластеризация
Кластеризация – это задача обнаружения групп и структур в данных, которые в той или иной мере «похожи», не используя известные структуры в данных, а обучаясь на том, что уже есть.
В частности, кластеризация используется таким образом, что новые точки данных добавляются только к существующим кластерам, без изменения их формы для соответствия новым данным. Другими словами, кластеры формируются до сбора данных, а не закрепляются после того, как все данные собраны.









