На нашем сайте вы можете читать онлайн «Математические основы живописи и архитектуры». Эта электронная книга доступна бесплатно и представляет собой целую полную версию без сокращений. Кроме того, доступна возможность слушать аудиокнигу, скачать её через торрент в формате fb2 или ознакомиться с кратким содержанием. Жанр книги — Знания и навыки, Учебная и научная литература, Учебники и пособия для вузов. Кроме того, ниже доступно описание произведения, предисловие и отзывы читателей. Регулярные обновления библиотеки и улучшения функционала делают наше сообщество идеальным местом для любителей книг.
Математические основы живописи и архитектуры

Автор
Дата выхода
02 апреля 2019
Краткое содержание книги Математические основы живописи и архитектуры, аннотация автора и описание
Прежде чем читать книгу целиком, ознакомьтесь с предисловием, аннотацией, описанием или кратким содержанием к произведению Математические основы живописи и архитектуры. Предисловие указано в том виде, в котором его написал автор (Т. П. Пушкарёва) в своем труде. Если нужная информация отсутствует, оставьте комментарий, и мы постараемся найти её для вас. Обратите внимание: Читатели могут делиться своими отзывами и обсуждениями, что поможет вам глубже понять книгу. Не забудьте и вы оставить свое впечатие о книге в комментариях внизу страницы.
Описание книги
В пособии рассмотрено применение математических фигур и расчетов в живописи и архитектуре, а также в теории цвета. Приведены примеры, способствующие усвоению теоретического материала. Предназначено для студентов классических и технических вузов художественного направления. Может быть полезно студентам при изучении курсов «Композиция» и «Дизайн», а также преподавателям художественных дисциплин.
Математические основы живописи и архитектуры читать онлайн полную книгу - весь текст целиком бесплатно
Перед вами текст книги, разбитый на страницы для удобства чтения. Благодаря системе сохранения последней прочитанной страницы, вы можете бесплатно читать онлайн книгу Математические основы живописи и архитектуры без необходимости искать место, на котором остановились. А еще, у нас можно настроить шрифт и фон для комфортного чтения. Наслаждайтесь любимыми книгами в любое время и в любом месте.
Текст книги
11, б), находящиеся в плоскостях, параллельных плоскостям проекций, выполняются эллипсами, у которых направление малой оси совпадает с направлением оси, не входящей в плоскость, а большая ей перпендикулярна. Здесь малая ось определяется как 0,71 от диаметра окружности, большая ось равна 1,22 от диаметра окружности.
Такое расположение осей получается при прямоугольном проектировании предмета в том случае, когда все три его измерения одинаково наклонены к плоскости проекций. При таком проектировании размеры предмета по всем трем осям уменьшаются в одинаковой степени и обычно их изображают без изменения.
Рис. 11. Изометрическое проектирование: а – расположение осей координат; б – расположение окружностей
Диметрия подразделяется на прямоугольную и фронтальную (косоугольную).
Для прямоугольной диметрической проекции ось OZ вертикальна, другие две оси наклонены к горизонтали: OX – под углом в 7°, а ОУ – в 41° (рис.
Фронтальная диметрическая проекция характеризуется тем, что OZ вертикальна, ОХ горизонтальна, а ОУ направляется под углом в 135° к каждой из этих двух осей (рис. 13).
При диметрическом проектировании размеры изображаемого предмета обычно делают без искажения по осям ОХ и OZ, а по оси ОУ уменьшают вдвое. Диметрические изображения более близки к перспективным, чем другие виды аксонометрии.
Рис. 12. Расположение осей координат для диметрической проекции
Рис. 13. Расположение осей координат для фронтальной проекции
Рис. 14. Оси горизонтальной изометрии
Для горизонтальной симметрии угол наклона оси ОY = 30° при сохранении прямого угла между осями ОХ и ОZ (рис. 14).
Этот вид косоугольной изометрической проекции часто используется при решении вопросов пространственной композиции жилых районов и архитектурно-планировочной организации больших территорий (архитектурных ансамблей).
Конец ознакомительного фрагмента.
Текст предоставлен ООО «ЛитРес».
Прочитайте эту книгу целиком, купив полную легальную версию (https://www.litres.ru/tatyana-pushkareva-17887737/matematicheskie-osnovy-zhivopisi-i-arhitektury/) на ЛитРес.





