На нашем сайте вы можете читать онлайн «Как читать мир». Эта электронная книга доступна бесплатно и представляет собой целую полную версию без сокращений. Кроме того, доступна возможность слушать аудиокнигу, скачать её через торрент в формате fb2 или ознакомиться с кратким содержанием. Жанр книги — Детские книги, Школьные учебники, Школьные учебники по геометрии. Кроме того, ниже доступно описание произведения, предисловие и отзывы читателей. Регулярные обновления библиотеки и улучшения функционала делают наше сообщество идеальным местом для любителей книг.
Как читать мир

Автор
Дата выхода
10 июля 2022
Краткое содержание книги Как читать мир, аннотация автора и описание
Прежде чем читать книгу целиком, ознакомьтесь с предисловием, аннотацией, описанием или кратким содержанием к произведению Как читать мир. Предисловие указано в том виде, в котором его написал автор () в своем труде. Если нужная информация отсутствует, оставьте комментарий, и мы постараемся найти её для вас. Обратите внимание: Читатели могут делиться своими отзывами и обсуждениями, что поможет вам глубже понять книгу. Не забудьте и вы оставить свое впечатие о книге в комментариях внизу страницы.
Описание книги
Книга не претендует на научные труды - в данной книге собраны по порядку все характеристики, нужные для человека, для осознанного существования. В книги вы узнаете не только характеристики, но и еще философию автора.
Как читать мир читать онлайн полную книгу - весь текст целиком бесплатно
Перед вами текст книги, разбитый на страницы для удобства чтения. Благодаря системе сохранения последней прочитанной страницы, вы можете бесплатно читать онлайн книгу Как читать мир без необходимости искать место, на котором остановились. А еще, у нас можно настроить шрифт и фон для комфортного чтения. Наслаждайтесь любимыми книгами в любое время и в любом месте.
Текст книги
То, что образуют отрезки поверхность – это непрерывное бесконечное количество точек.
Мера измерения поверхности называется площадью. Площадь – это численное характеристика двумерной геометрической фигуры.
Площадь также можно сказать часть плоскости замкнутая или ограниченная прямыми.
у каждого объекта есть поверхность, которая образует площадь.
Есть много задач практических с этими характеристиками. Для решения каждой из них придумывают специальные буквенные выражения, называемые формулами.
У периметра самое что есть простоя формула она следующая.
В формуле, а, б, с, означают стороны отрезки периметра.
Количества формул у площади будет по больше. для определённых поверхностей есть определённая подобранная формула.
Квадрат находится по формуле где одна сторона в квадрате.
Зная диагональ квадрата можно найти по формуле площадь она следующая:
Также можно найти площадь квадрата зная диагональ из вершины в середину одной из противоположных сторон:
В случае, когда есть квадрат вписанный или описаны вокруг окружности формулы принимают следующие виды:
Формула прямоугольника тоже построена таким образом одна сторона умножается на другую:
По аналогии с квадратом зная сторону и диагональ можно найти сторону.
Формула площади по диагоналям прямоугольника:
Зная радиус и сторону прямоугольника можно найти площадь прямоугольника описанного окружности.
Площадь прямоугольника через диаметры вписанного прямоугольника:
Параллелограмм более сложная фигура чем прямоугольник и вообще, чем труднее фигура, тем дольше и труднее находить площадь:
Площадь параллелограмма по углу a.
Площадь параллелограмма по диагоналям и угу между этими диагоналями:
где –
, угол между диагоналями
и
.
