На нашем сайте вы можете читать онлайн «Водородное топливо. Производство, хранение, использование». Эта электронная книга доступна бесплатно и представляет собой целую полную версию без сокращений. Кроме того, доступна возможность слушать аудиокнигу, скачать её через торрент в формате fb2 или ознакомиться с кратким содержанием. Жанр книги — Знания и навыки, Научно-популярная литература. Кроме того, ниже доступно описание произведения, предисловие и отзывы читателей. Регулярные обновления библиотеки и улучшения функционала делают наше сообщество идеальным местом для любителей книг.
Водородное топливо. Производство, хранение, использование

Автор
Дата выхода
29 января 2022
Краткое содержание книги Водородное топливо. Производство, хранение, использование, аннотация автора и описание
Прежде чем читать книгу целиком, ознакомьтесь с предисловием, аннотацией, описанием или кратким содержанием к произведению Водородное топливо. Производство, хранение, использование. Предисловие указано в том виде, в котором его написал автор (Юрий Степанович Почанин) в своем труде. Если нужная информация отсутствует, оставьте комментарий, и мы постараемся найти её для вас. Обратите внимание: Читатели могут делиться своими отзывами и обсуждениями, что поможет вам глубже понять книгу. Не забудьте и вы оставить свое впечатие о книге в комментариях внизу страницы.
Описание книги
В книге даны характеристики водорода и водородного топлива. Рассмотрены основные методы производства водорода, в том числе: паровая конверсия природного газа, обычная и плазменная газификация угля, термохимические циклы, основные способы электролиза, а также производство водорода с использованием ядерной энергетики, источников альтернативной энергетики и применения фотосинтеза Описаны принципы работы различных топливных элементов. Дана характеристика промышленных способов очистки водорода. При хранении водорода дан анализ наземных и подземных хранилищ газа, баллонного хранения газообразного и жидкого водорода. Большое внимание уделено хранению водорода материалами, способными адсорбировать водород, и легкими композитными материалами, химически связывающие водород. Отдельная глава посвящена использованию водородного топлива на транспорте и энергетике. Рассмотрены вопросы безопасности водородных технологий. Дано краткое состояние работ по использованию водорода в термоядерном синтезе.
Водородное топливо. Производство, хранение, использование читать онлайн полную книгу - весь текст целиком бесплатно
Перед вами текст книги, разбитый на страницы для удобства чтения. Благодаря системе сохранения последней прочитанной страницы, вы можете бесплатно читать онлайн книгу Водородное топливо. Производство, хранение, использование без необходимости искать место, на котором остановились. А еще, у нас можно настроить шрифт и фон для комфортного чтения. Наслаждайтесь любимыми книгами в любое время и в любом месте.
Текст книги
Цикл может выполняться с любым источником очень высоких температур, примерно 950°C, например, с помощью концентрации солнечной энергии (система CSP) и считается хорошо подходящим для производства водорода высокотемпературными ядерными реактор (https://wiki2.wiki/wiki/Very_high_temperature_reactor)ами.
Таким образом, крупномасштабное производство водорода в ядерной энергетике должно обеспечить существенную экономию. Детальное изучение проекта указывает, что цикл IS, соединенный с модульным гелиевым реактором, мог бы производить водород по стоимости 1,50–2,00 долл.
2. Цикл «медь – хлор» (Cu–Cl) является четырехступенчатым термохимическим цикл (https://ru.wikipedia.org/w/index.php?title%3dТермохимический_цикл%26action%3dedit%26redlink%3d1)ом для производства водорода. Представляет собой гибридный процесс, в котором используются этапы термохимии (https://ru.
Цикл Cu – Cl включает четыре химические реакции (https://ru.wikipedia.org/wiki/Химическая_реакция):
1.2. Cu + 2HCl (https://ru.wikipedia.org/wiki/Хлороводород) (г)? 2 CuCl (ж)+ Н2 (г) (430–475°С)
2.2. CuCl2 (https://ru.wikipedia.org/wiki/Хлорид_меди%28II%29)+H2O (г) ? Cu2OCl2 + 2 HCl (г) (400°C)
3.2. Cu2OCl2? 4CuCl (https://ru.wikipedia.org/wiki/Хлорид_меди%28I%29)+ O2 (г) (500°C)
4.
Чистая реакция: 2H2O ? 2H2+ O2
Преимуществами цикла медь-хлор являются более низкие рабочие температуры (https://ru.wikipedia.org/w/index.php?title%3dРабочая_Температура%26action%3dedit%26redlink%3d1), возможность использования низкопотенциального отходящего тепла для повышения энергоэффективности и потенциально более дешевые материалы. По сравнению с другими термохимическими циклами, процесс Cu–Cl требует относительно низких температур до 500°C.
Еще одним важным достоинством этого цикла является относительно низкое напряжение (следовательно, низкий расход электроэнергии), необходимое для электрохимической стадии (от 0,6 до 1,0 В). Общий КПД цикла Cu – Cl составляет чуть более 43%, исключая дополнительные потенциальные выгоды от использования отходящего тепла в цикле.











