На нашем сайте вы можете читать онлайн «Введение в машинное обучение». Эта электронная книга доступна бесплатно и представляет собой целую полную версию без сокращений. Кроме того, доступна возможность слушать аудиокнигу, скачать её через торрент в формате fb2 или ознакомиться с кратким содержанием. Жанр книги — Знания и навыки, Учебная и научная литература, Учебники и пособия для вузов. Кроме того, ниже доступно описание произведения, предисловие и отзывы читателей. Регулярные обновления библиотеки и улучшения функционала делают наше сообщество идеальным местом для любителей книг.
Введение в машинное обучение

Дата выхода
15 января 2024
Краткое содержание книги Введение в машинное обучение, аннотация автора и описание
Прежде чем читать книгу целиком, ознакомьтесь с предисловием, аннотацией, описанием или кратким содержанием к произведению Введение в машинное обучение. Предисловие указано в том виде, в котором его написал автор (Равиль Ильгизович Мухамедиев) в своем труде. Если нужная информация отсутствует, оставьте комментарий, и мы постараемся найти её для вас. Обратите внимание: Читатели могут делиться своими отзывами и обсуждениями, что поможет вам глубже понять книгу. Не забудьте и вы оставить свое впечатие о книге в комментариях внизу страницы.
Описание книги
Учебник поможет студентам различных специальностей освоить современные технологии машинного обучения и практически использовать их в работе и научных проектах. В настоящем пособии даются весьма краткие теоретические и относительно подробные практические сведения о применении отдельных алгоритмов классификации и регрессии. Для практического освоения материала достаточно базовых навыков работы с языком Python. При этом освоение возможностей основных библиотек, таких как matplotlib, numpy, pandas, sklearn происходит в процессе решения задач. Используя полученные знания и навыки, студенты смогут решать широкий круг задач классификации, регрессии, анализировать влияние отдельных признаков на работу классификаторов и регрессионных моделей, снижать размерность данных, визуализировать результаты и оценивать качество моделей машинного обучения. Издание рекомендовано УМО РУМС.
Введение в машинное обучение читать онлайн полную книгу - весь текст целиком бесплатно
Перед вами текст книги, разбитый на страницы для удобства чтения. Благодаря системе сохранения последней прочитанной страницы, вы можете бесплатно читать онлайн книгу Введение в машинное обучение без необходимости искать место, на котором остановились. А еще, у нас можно настроить шрифт и фон для комфортного чтения. Наслаждайтесь любимыми книгами в любое время и в любом месте.
Текст книги
Схема классического нейрона
Выход нейрона определяется формулами:
где g(z) – сигмоидальная функция.
Выражение функции гипотезы классического нейрона идентично выражению функции гипотезы логистической регрессии (Eq. 2.9).
Часто в качестве активационной функции применяется сигмоидальная функция, описанная в разделе «Логистическая регрессия».
В последнее время в литературе веса ? нейронной сети чаще обозначают символом w, подчеркивая тем самым преемственность естественных нейронных сетей и искусственных нейронных сетей, где широко используется понятие синаптического коэффициента или веса (weight).
Для упрощения схемы сумматор и активационный элемент объединяют, тогда многослойная сеть может выглядеть так, как показано на рисунке 1.
На рисунке входные нейроны обозначены символом х, нейроны скрытого слоя – символами a
], a
], a
], a
], a
] и выходного слоя – символом a
]. Если нейронная сеть имеет несколько слоев, то первый слой называют входным, а последний – выходным.
] = x.
На входе следующего или первого скрытого слоя имеем
Выход первого слоя:
Для любого нейрона j, находящегося в скрытом слое i:
В этом выражении значение bias и его вес упомянуты отдельно как произведение
,
где w
] – вектор весов нейрона j.
Для выходного слоя:
Например, для сети на рисунке 2.
Выход нейронной сети определяется выражением:
Рисунок 2.8. Схема многослойной сети с одним скрытым слоем
Для настройки весов w нейронной сети (обучения сети) используют функцию стоимости, напоминающую функцию стоимости для логистической регрессии (Eq. 2.12).





