Главная » Знания и навыки » Введение в машинное обучение (сразу полная версия бесплатно доступна) Равиль Ильгизович Мухамедиев читать онлайн полностью / Библиотека

Введение в машинное обучение

На нашем сайте вы можете читать онлайн «Введение в машинное обучение». Эта электронная книга доступна бесплатно и представляет собой целую полную версию без сокращений. Кроме того, доступна возможность слушать аудиокнигу, скачать её через торрент в формате fb2 или ознакомиться с кратким содержанием. Жанр книги — Знания и навыки, Учебная и научная литература, Учебники и пособия для вузов. Кроме того, ниже доступно описание произведения, предисловие и отзывы читателей. Регулярные обновления библиотеки и улучшения функционала делают наше сообщество идеальным местом для любителей книг.

Краткое содержание книги Введение в машинное обучение, аннотация автора и описание

Прежде чем читать книгу целиком, ознакомьтесь с предисловием, аннотацией, описанием или кратким содержанием к произведению Введение в машинное обучение. Предисловие указано в том виде, в котором его написал автор (Равиль Ильгизович Мухамедиев) в своем труде. Если нужная информация отсутствует, оставьте комментарий, и мы постараемся найти её для вас. Обратите внимание: Читатели могут делиться своими отзывами и обсуждениями, что поможет вам глубже понять книгу. Не забудьте и вы оставить свое впечатие о книге в комментариях внизу страницы.

Описание книги

Учебник поможет студентам различных специальностей освоить современные технологии машинного обучения и практически использовать их в работе и научных проектах. В настоящем пособии даются весьма краткие теоретические и относительно подробные практические сведения о применении отдельных алгоритмов классификации и регрессии. Для практического освоения материала достаточно базовых навыков работы с языком Python. При этом освоение возможностей основных библиотек, таких как matplotlib, numpy, pandas, sklearn происходит в процессе решения задач. Используя полученные знания и навыки, студенты смогут решать широкий круг задач классификации, регрессии, анализировать влияние отдельных признаков на работу классификаторов и регрессионных моделей, снижать размерность данных, визуализировать результаты и оценивать качество моделей машинного обучения. Издание рекомендовано УМО РУМС.

Введение в машинное обучение читать онлайн полную книгу - весь текст целиком бесплатно

Перед вами текст книги, разбитый на страницы для удобства чтения. Благодаря системе сохранения последней прочитанной страницы, вы можете бесплатно читать онлайн книгу Введение в машинное обучение без необходимости искать место, на котором остановились. А еще, у нас можно настроить шрифт и фон для комфортного чтения. Наслаждайтесь любимыми книгами в любое время и в любом месте.

Текст книги

Шрифт
Размер шрифта
-
+
Межстрочный интервал

com/newsroom/id/3412017)]]

Организациям и исследователям, занимающимся разработкой наукоемких технологий, рекомендуется рассматривать следующие научные области: Smart Dust, Machine Learning, Virtual Personal Assistants, Cognitive Expert Advisors, Smart Data Discovery, Smart Workspace, Conversational User Interfaces, Smart Robots, Commercial UAVs (Drones), Autonomous Vehicles, Natural-Language Question Answering, Personal Analytics, Enterprise Taxonomy and Ontology Management, Data Broker PaaS (dbrPaaS) и Context Brokering.

Тут будет реклама 1

Таким образом, ML из сферы научных исследований перешло в сферу инженерных дисциплин. Знание ML необходимо системным аналитикам, инженерам программного обеспечения, разработчикам встроенных систем, программистам. Общие понятия о ML должны быть также у специалистов по управлению.

В настоящее время существует несколько программных систем и библиотек программ, реализующих алгоритмы машинного обучения с той или иной степенью гибкости. Например, система RapidMiner [[2 - https://rapidminer.

Тут будет реклама 2
com/ (https://rapidminer.com/)]], один из лучших интегрированных пакетов, обеспечивает подготовку данных, создание моделей и тем самым интеграцию их в бизнес-процессы организации. Matlab, широко известный пакет прикладных программ и язык программирования компании MathWorks, предоставляет несколько сотен функций для анализа данных – от дифференциальных уравнений и линейной алгебры до математической статистики и рядов Фурье. GNU Octave использует совместимый с Matlab язык высокого уровня и в целом имеет высокую совместимость с Matlab.
Тут будет реклама 3
Это позволяет использовать и его для прототипирования систем машинного обучения. Функции Octave доступны онлайн [[3 - Octave online. – https://octave-online.net/ (https://octave-online.net/) (2017-04-01).]], загрузить систему можно по ссылке [[4 - Octave download. – https://www.gnu.org/software/octave/download.html (https://www.gnu.org/software/octave/download.html) (2017-04-01).]]. Отметим, что Octave содержит несколько предустановленных библиотек, список которых можно просмотреть по ссылке https://octave.
Тут будет реклама 4
sourceforge.io/packages.php (https://octave.sourceforge.io/packages.php).

Однако наиболее часто упоминается язык программирования Python и ряд библиотек, использующих его для реализации алгоритмов машинного обучения. Например, развитые библиотеки программ по машинному обучению могут быть вызваны из среды Anaconda (https://www.anaconda.com/ (https://www.anaconda.com/)), основой которой является язык Python.

Добавить мнение

Ваша оценка

Кликните на изображение чтобы обновить код, если он неразборчив

Мнения

Еще нет комментариев о книге Введение в машинное обучение, и ваше мнение может быть первым и самым ценным! Расскажите о своих впечатлениях, поделитесь мыслями и отзывами. Ваш отзыв поможет другим читателям сделать правильный выбор. Не стесняйтесь делиться своим мнением!

Похожие книги