Главная » Знания и навыки » Введение в машинное обучение (сразу полная версия бесплатно доступна) Равиль Ильгизович Мухамедиев читать онлайн полностью / Библиотека

Введение в машинное обучение

На нашем сайте вы можете читать онлайн «Введение в машинное обучение». Эта электронная книга доступна бесплатно и представляет собой целую полную версию без сокращений. Кроме того, доступна возможность слушать аудиокнигу, скачать её через торрент в формате fb2 или ознакомиться с кратким содержанием. Жанр книги — Знания и навыки, Учебная и научная литература, Учебники и пособия для вузов. Кроме того, ниже доступно описание произведения, предисловие и отзывы читателей. Регулярные обновления библиотеки и улучшения функционала делают наше сообщество идеальным местом для любителей книг.

Краткое содержание книги Введение в машинное обучение, аннотация автора и описание

Прежде чем читать книгу целиком, ознакомьтесь с предисловием, аннотацией, описанием или кратким содержанием к произведению Введение в машинное обучение. Предисловие указано в том виде, в котором его написал автор (Равиль Ильгизович Мухамедиев) в своем труде. Если нужная информация отсутствует, оставьте комментарий, и мы постараемся найти её для вас. Обратите внимание: Читатели могут делиться своими отзывами и обсуждениями, что поможет вам глубже понять книгу. Не забудьте и вы оставить свое впечатие о книге в комментариях внизу страницы.

Описание книги

Учебник поможет студентам различных специальностей освоить современные технологии машинного обучения и практически использовать их в работе и научных проектах. В настоящем пособии даются весьма краткие теоретические и относительно подробные практические сведения о применении отдельных алгоритмов классификации и регрессии. Для практического освоения материала достаточно базовых навыков работы с языком Python. При этом освоение возможностей основных библиотек, таких как matplotlib, numpy, pandas, sklearn происходит в процессе решения задач. Используя полученные знания и навыки, студенты смогут решать широкий круг задач классификации, регрессии, анализировать влияние отдельных признаков на работу классификаторов и регрессионных моделей, снижать размерность данных, визуализировать результаты и оценивать качество моделей машинного обучения. Издание рекомендовано УМО РУМС.

Введение в машинное обучение читать онлайн полную книгу - весь текст целиком бесплатно

Перед вами текст книги, разбитый на страницы для удобства чтения. Благодаря системе сохранения последней прочитанной страницы, вы можете бесплатно читать онлайн книгу Введение в машинное обучение без необходимости искать место, на котором остановились. А еще, у нас можно настроить шрифт и фон для комфортного чтения. Наслаждайтесь любимыми книгами в любое время и в любом месте.

Текст книги

Шрифт
Размер шрифта
-
+
Межстрочный интервал

Еще одно неудобство связано с тем, что если в тестовом наборе присутствует значение признака, которое не встречалось в обучающем наборе, то модель присвоит этому значению нулевую вероятность или нулевую частоту и не сможет сделать прогноз. С этим недостатком борются, применяя сглаживание по Лапласу так, как описано выше.

2.11.4. Приложения наивного байесовского алгоритма

Мультиклассовая классификация в режиме реального времени. NBA очень быстро обучается, поэтому его можно использовать для обработки данных в режиме реального времени.

Тут будет реклама 1
NBА обеспечивает возможность многоклассовой классификации.

Классификация текстов, фильтрация спама, анализ тональности текста, определение авторства, поиск информации, устранение неоднозначности слов. При решении задач автоматической обработки текстов часто используется статистическая модель естественного языка, NBA ей идеально соответствует. Поэтому алгоритм находит широкое применение в задаче идентификации спама в электронных письмах, анализа тональности текста (sentiment analysis), поиска информации, соответствующей запросу (information retrieval), определения авторства текста (author identification), устранения неоднозначности слов (word disambiguation).

Тут будет реклама 2

Рекомендательные системы. NBA – один из методов, который эффективно применяется в решении задач совместной фильтрации (collaborative filtering) [[62 - Коллаборативная_фильтрация. – ru.wikipedia.org/wiki/Коллаборативная_фильтрация; https://en.wikipedia.org/wiki/Collaborative_search_engine (https://en.

Тут будет реклама 3
wikipedia.org/wiki/Collaborative_search_engine)]]. То есть алгоритм позволяет реализовать рекомендательную систему. В рамках такой системы информация о товарах или услугах отфильтровывается на основании спрогнозированного мнения пользователя о ней. Совместная фильтрация подразумевает, что пользователь относится к некоторой типичной группе пользователей, а прогноз вычисляется с учетом большого количества мнений пользователей.

2.12. Композиции алгоритмов машинного обучения.

Тут будет реклама 4
Бустинг

Представим ситуацию, что мы имеем несколько простых алгоритмов классификации, дающих результат лишь немного лучше случайного выбора. Оказывается, что, используя группу из нескольких таких алгоритмов, можно получить хороший результат, строя итоговый алгоритм так, чтобы каждый простой алгоритм, включаемый в группу, компенсировал недостатки предыдущего.

Суть градиентного бустинга, введенного в [[63 - Friedman, Jerome H.

Добавить мнение

Ваша оценка

Кликните на изображение чтобы обновить код, если он неразборчив

Мнения

Еще нет комментариев о книге Введение в машинное обучение, и ваше мнение может быть первым и самым ценным! Расскажите о своих впечатлениях, поделитесь мыслями и отзывами. Ваш отзыв поможет другим читателям сделать правильный выбор. Не стесняйтесь делиться своим мнением!

Похожие книги