На нашем сайте вы можете читать онлайн «Введение в машинное обучение». Эта электронная книга доступна бесплатно и представляет собой целую полную версию без сокращений. Кроме того, доступна возможность слушать аудиокнигу, скачать её через торрент в формате fb2 или ознакомиться с кратким содержанием. Жанр книги — Знания и навыки, Учебная и научная литература, Учебники и пособия для вузов. Кроме того, ниже доступно описание произведения, предисловие и отзывы читателей. Регулярные обновления библиотеки и улучшения функционала делают наше сообщество идеальным местом для любителей книг.
Введение в машинное обучение

Дата выхода
15 января 2024
Краткое содержание книги Введение в машинное обучение, аннотация автора и описание
Прежде чем читать книгу целиком, ознакомьтесь с предисловием, аннотацией, описанием или кратким содержанием к произведению Введение в машинное обучение. Предисловие указано в том виде, в котором его написал автор (Равиль Ильгизович Мухамедиев) в своем труде. Если нужная информация отсутствует, оставьте комментарий, и мы постараемся найти её для вас. Обратите внимание: Читатели могут делиться своими отзывами и обсуждениями, что поможет вам глубже понять книгу. Не забудьте и вы оставить свое впечатие о книге в комментариях внизу страницы.
Описание книги
Учебник поможет студентам различных специальностей освоить современные технологии машинного обучения и практически использовать их в работе и научных проектах. В настоящем пособии даются весьма краткие теоретические и относительно подробные практические сведения о применении отдельных алгоритмов классификации и регрессии. Для практического освоения материала достаточно базовых навыков работы с языком Python. При этом освоение возможностей основных библиотек, таких как matplotlib, numpy, pandas, sklearn происходит в процессе решения задач. Используя полученные знания и навыки, студенты смогут решать широкий круг задач классификации, регрессии, анализировать влияние отдельных признаков на работу классификаторов и регрессионных моделей, снижать размерность данных, визуализировать результаты и оценивать качество моделей машинного обучения. Издание рекомендовано УМО РУМС.
Введение в машинное обучение читать онлайн полную книгу - весь текст целиком бесплатно
Перед вами текст книги, разбитый на страницы для удобства чтения. Благодаря системе сохранения последней прочитанной страницы, вы можете бесплатно читать онлайн книгу Введение в машинное обучение без необходимости искать место, на котором остановились. А еще, у нас можно настроить шрифт и фон для комфортного чтения. Наслаждайтесь любимыми книгами в любое время и в любом месте.
Текст книги
fit(X_train, y_train)
nthread – количество потоков, которое рекомендуется устанавливать не по количеству процессорных ядер вычислительной системы.
Результат, который получен в этом случае:
Accuracy of XGBClassifier on training set: 0.88
Accuracy of XGBClassifier on test set: 0.86
Важной особенностью является нечувствительность к нормировке данных. То есть если мы будем рассматривать исходные данные изображения в их первозданном виде, исключив операторы:
##X_train1=X_train1/255.0
##X_test1=X_test1/255.
Мы получим те же самые показатели качества, что и для нормированных данных.
Примечание. При проведении экспериментов с большим набором данных нужно учесть, что алгоритм довольно долго обучается. В частности, при решении задачи Fashion-MNIST время обучения превышает 10 минут. Программу, решающую задачу Fashion-MNIST с помощью XGBoost (MLF_XGBoost_Fashion_MNIST_001), можно загрузить по ссылке https://www.dropbox.com/s/frb01qt3slqkl6q/MLF_XGBoost_Fashion_MNIST_001.
2.13. Снижение размерности данных. Метод главных компонент
Метод главных компонент (Principal Component Analysis – PCA) – один из «классических» способов уменьшения размерности данных, причем таким образом, чтобы минимизировать потери информации. С его помощью можно выяснить, какие из свойств объектов наиболее влиятельны в процессе принятия классификации. Однако он вполне успешно применяется для сжатия данных и обработки изображений.
Суть метода заключается в том, что ведется поиск ортогональных проекций с наибольшим рассеянием (дисперсией), которые и называются главными компонентами.





