На нашем сайте вы можете читать онлайн «Введение в машинное обучение». Эта электронная книга доступна бесплатно и представляет собой целую полную версию без сокращений. Кроме того, доступна возможность слушать аудиокнигу, скачать её через торрент в формате fb2 или ознакомиться с кратким содержанием. Жанр книги — Знания и навыки, Учебная и научная литература, Учебники и пособия для вузов. Кроме того, ниже доступно описание произведения, предисловие и отзывы читателей. Регулярные обновления библиотеки и улучшения функционала делают наше сообщество идеальным местом для любителей книг.
Введение в машинное обучение

Дата выхода
15 января 2024
Краткое содержание книги Введение в машинное обучение, аннотация автора и описание
Прежде чем читать книгу целиком, ознакомьтесь с предисловием, аннотацией, описанием или кратким содержанием к произведению Введение в машинное обучение. Предисловие указано в том виде, в котором его написал автор (Равиль Ильгизович Мухамедиев) в своем труде. Если нужная информация отсутствует, оставьте комментарий, и мы постараемся найти её для вас. Обратите внимание: Читатели могут делиться своими отзывами и обсуждениями, что поможет вам глубже понять книгу. Не забудьте и вы оставить свое впечатие о книге в комментариях внизу страницы.
Описание книги
Учебник поможет студентам различных специальностей освоить современные технологии машинного обучения и практически использовать их в работе и научных проектах. В настоящем пособии даются весьма краткие теоретические и относительно подробные практические сведения о применении отдельных алгоритмов классификации и регрессии. Для практического освоения материала достаточно базовых навыков работы с языком Python. При этом освоение возможностей основных библиотек, таких как matplotlib, numpy, pandas, sklearn происходит в процессе решения задач. Используя полученные знания и навыки, студенты смогут решать широкий круг задач классификации, регрессии, анализировать влияние отдельных признаков на работу классификаторов и регрессионных моделей, снижать размерность данных, визуализировать результаты и оценивать качество моделей машинного обучения. Издание рекомендовано УМО РУМС.
Введение в машинное обучение читать онлайн полную книгу - весь текст целиком бесплатно
Перед вами текст книги, разбитый на страницы для удобства чтения. Благодаря системе сохранения последней прочитанной страницы, вы можете бесплатно читать онлайн книгу Введение в машинное обучение без необходимости искать место, на котором остановились. А еще, у нас можно настроить шрифт и фон для комфортного чтения. Наслаждайтесь любимыми книгами в любое время и в любом месте.
Текст книги
Системный подход к геодинамическому районированию на основе искусственных нейронных сетей // Горные науки и технологии. – 2018. – № 3. – С. 14–25.]], при создании системы связи нового типа [[16 - Clancy, Charles, Joe Hecker, Erich Stuntebeck, and Tim O?Shea. Applications of machine learning to cognitive radio networks // Wireless Communications, IEEE. – 2007. – Vol. 14. – Issue 4. – P. 47–52.]], в астрономии [[17 - Ball, Nicholas M. and Robert J. Brunner. Data mining and machine learning in astronomy // Journal of Modern Physics D.
1.1. Машинное обучение в задачах обработки данных
Массивы накопленных или вновь поступающих данных обрабатываются для решения задач регрессии, классификации или кластеризации.
В первом случае задача исследователя или разработанной программы ? используя накопленные данные, предсказать показатели изучаемой системы в будущем или восполнить пробелы в данных.
Во втором случае, используя размеченные наборы данных, необходимо разработать программу, которая сможет самостоятельно размечать новые, ранее не размеченные наборы данных.
В третьем случае исследователь имеет множество объектов, принадлежность которых к классам, как и сами классы, не определена. Необходимо разработать систему, позволяющую определить число и признаки классов на основании признаков объектов.





