На нашем сайте вы можете читать онлайн «Теорема века. Мир с точки зрения математики». Эта электронная книга доступна бесплатно и представляет собой целую полную версию без сокращений. Кроме того, доступна возможность слушать аудиокнигу, скачать её через торрент в формате fb2 или ознакомиться с кратким содержанием. Жанр книги — ---. Кроме того, ниже доступно описание произведения, предисловие и отзывы читателей. Регулярные обновления библиотеки и улучшения функционала делают наше сообщество идеальным местом для любителей книг.
Теорема века. Мир с точки зрения математики

Краткое содержание книги Теорема века. Мир с точки зрения математики, аннотация автора и описание
Прежде чем читать книгу целиком, ознакомьтесь с предисловием, аннотацией, описанием или кратким содержанием к произведению Теорема века. Мир с точки зрения математики. Предисловие указано в том виде, в котором его написал автор (Анри Пуанкаре) в своем труде. Если нужная информация отсутствует, оставьте комментарий, и мы постараемся найти её для вас. Обратите внимание: Читатели могут делиться своими отзывами и обсуждениями, что поможет вам глубже понять книгу. Не забудьте и вы оставить свое впечатие о книге в комментариях внизу страницы.
Описание книги
«Наука не сводится к сумме фактов, как здание не сводится к груде камней». (Анри Пуанкаре)
Автор теоремы, сводившей с ума в течение века математиков всего мира, рассказывает о своем понимании науки и искусства. Как выглядит мир, с точки зрения математики? Как разрешить все проблемы человечества посредством простых исчислений? В чем заключается суть небесной механики? Обо всем этом читайте в книге!
Теорема века. Мир с точки зрения математики читать онлайн полную книгу - весь текст целиком бесплатно
Перед вами текст книги, разбитый на страницы для удобства чтения. Благодаря системе сохранения последней прочитанной страницы, вы можете бесплатно читать онлайн книгу Теорема века. Мир с точки зрения математики без необходимости искать место, на котором остановились. А еще, у нас можно настроить шрифт и фон для комфортного чтения. Наслаждайтесь любимыми книгами в любое время и в любом месте.
Текст книги
Если мы хотим представить себе линию, то это возможно сделать, только пользуясь свойствами физической непрерывности; т. е. ее можно представить себе не иначе, как обладающей некоторой шириной. Две линии явятся для нас тогда в форме двух узких полос, и если удовольствоваться этим грубым изображением, то очевидно, что при пересечении две линии будут иметь общую часть.
Но чистый геометр делает еще одно усилие: не отказываясь совершенно от помощи своих чувств, он хочет дойти до понятия линии без ширины, точки без протяжения.
Вот почему говорят, что две пересекающиеся линии имеют общую точку, и эта истина представляется интуитивной.
Но она содержала бы противоречие, если бы понимать линии как непрерывности первого порядка, т. е. если на линиях, проводимых геометром, должны находиться только точки, координаты которых – рациональные числа. Противоречие станет очевидным, лишь только установят, например, существование прямых и кругов.
В самом деле, ясно, что если бы в качестве действительных рассматривались только точки с соизмеримыми координатами, то круг, вписанный в квадрат, и диагональ этого квадрата не пересекались бы, потому что координаты точки их пересечения несоизмеримы.
Этого еще недостаточно, потому что таким образом мы имели бы не все несоизмеримые числа, а только некоторые из них.
Но представим себе прямую, разделенную на две полупрямые. Каждая из этих полупрямых явится в нашем воображении как полоса известной ширины; притом эти полосы будут покрывать одна другую, потому что между ними не должно быть никакого промежутка.





