На нашем сайте вы можете читать онлайн «Теорема века. Мир с точки зрения математики». Эта электронная книга доступна бесплатно и представляет собой целую полную версию без сокращений. Кроме того, доступна возможность слушать аудиокнигу, скачать её через торрент в формате fb2 или ознакомиться с кратким содержанием. Жанр книги — ---. Кроме того, ниже доступно описание произведения, предисловие и отзывы читателей. Регулярные обновления библиотеки и улучшения функционала делают наше сообщество идеальным местом для любителей книг.
Теорема века. Мир с точки зрения математики

Краткое содержание книги Теорема века. Мир с точки зрения математики, аннотация автора и описание
Прежде чем читать книгу целиком, ознакомьтесь с предисловием, аннотацией, описанием или кратким содержанием к произведению Теорема века. Мир с точки зрения математики. Предисловие указано в том виде, в котором его написал автор (Анри Пуанкаре) в своем труде. Если нужная информация отсутствует, оставьте комментарий, и мы постараемся найти её для вас. Обратите внимание: Читатели могут делиться своими отзывами и обсуждениями, что поможет вам глубже понять книгу. Не забудьте и вы оставить свое впечатие о книге в комментариях внизу страницы.
Описание книги
«Наука не сводится к сумме фактов, как здание не сводится к груде камней». (Анри Пуанкаре)
Автор теоремы, сводившей с ума в течение века математиков всего мира, рассказывает о своем понимании науки и искусства. Как выглядит мир, с точки зрения математики? Как разрешить все проблемы человечества посредством простых исчислений? В чем заключается суть небесной механики? Обо всем этом читайте в книге!
Теорема века. Мир с точки зрения математики читать онлайн полную книгу - весь текст целиком бесплатно
Перед вами текст книги, разбитый на страницы для удобства чтения. Благодаря системе сохранения последней прочитанной страницы, вы можете бесплатно читать онлайн книгу Теорема века. Мир с точки зрения математики без необходимости искать место, на котором остановились. А еще, у нас можно настроить шрифт и фон для комфортного чтения. Наслаждайтесь любимыми книгами в любое время и в любом месте.
Текст книги
Можно было бы установить несколько словарей, аналогичных предыдущему, и все они позволяли бы простым «переводом» преобразовывать теоремы Лобачевского в теоремы обыкновенной геометрии.
Скрытые аксиомы. Являются ли аксиомы, явно формулируемые в руководствах, единственными основаниями геометрии? Мы можем убедиться в противном, замечая, что даже если одну за другой отвергнуть эти аксиомы, все-таки еще останутся нетронутыми некоторые предложения, общие теориям Евклида, Лобачевского и Римана. Эти предложения должны опираться на некоторые предпосылки, которые геометры допускают в скрытой форме.
Стюарт Милль утверждал, что всякое определение содержит аксиому, так как, определяя, скрыто утверждают существование определяемого предмета. Это значило бы заходить слишком далеко; редко бывает, чтобы математики давали определение, не доказав существования определяемого объекта; если же они избавляют себя от этого труда, то обыкновенно в тех случаях, когда читатель сам легко может сделать соответствующее дополнение.
Но если замечание Стюарта Милля не может быть приложено ко всем определениям, оно тем не менее остается справедливым для некоторых из них.
Это определение, очевидно, скрывает в себе новую аксиому; правда, можно было бы его изменить, и это было бы лучше, но тогда надо было явно указать эту аксиому.
Другие определения могут дать повод к размышлениям, не менее важным.
Таково, например, определение равенства двух фигур: две фигуры равны, когда их можно наложить одну на другую. Чтобы сделать это, надо одну из них перемещать до тех пор, пока она не совпадет с другой; но как надо ее перемещать? Если мы зададим этот вопрос, то, без сомнения, нам ответят, что надо сделать это, не деформируя ее, – как если бы дело шло о неизменяемом твердом теле. Но тогда порочный круг будет очевиден.





