На нашем сайте вы можете читать онлайн «Глоссариум по искусственному интеллекту: 2500 терминов. Том 1». Эта электронная книга доступна бесплатно и представляет собой целую полную версию без сокращений. Кроме того, доступна возможность слушать аудиокнигу, скачать её через торрент в формате fb2 или ознакомиться с кратким содержанием. Жанр книги — Техническая литература. Кроме того, ниже доступно описание произведения, предисловие и отзывы читателей. Регулярные обновления библиотеки и улучшения функционала делают наше сообщество идеальным местом для любителей книг.
Глоссариум по искусственному интеллекту: 2500 терминов. Том 1

Дата выхода
18 августа 2022
Краткое содержание книги Глоссариум по искусственному интеллекту: 2500 терминов. Том 1, аннотация автора и описание
Прежде чем читать книгу целиком, ознакомьтесь с предисловием, аннотацией, описанием или кратким содержанием к произведению Глоссариум по искусственному интеллекту: 2500 терминов. Том 1. Предисловие указано в том виде, в котором его написал автор (Александр Юрьевич Чесалов) в своем труде. Если нужная информация отсутствует, оставьте комментарий, и мы постараемся найти её для вас. Обратите внимание: Читатели могут делиться своими отзывами и обсуждениями, что поможет вам глубже понять книгу. Не забудьте и вы оставить свое впечатие о книге в комментариях внизу страницы.
Описание книги
Дорогой читатель! Вашему вниманию предлагается уникальная книга! Современный глоссарий из более чем 2500 популярных терминов и определений по машинному обучению и искусственному интеллекту. Эта книга написана экспертами-практиками, которые вместе работали над Программой Центра искусственного интеллекта, а также программами «Искусственный интеллект» и «Глубокая аналитика» проекта «Приоритет 2030» в МГТУ им. Н. Э. Баумана в 2021—2022 годах.
Глоссариум по искусственному интеллекту: 2500 терминов. Том 1 читать онлайн полную книгу - весь текст целиком бесплатно
Перед вами текст книги, разбитый на страницы для удобства чтения. Благодаря системе сохранения последней прочитанной страницы, вы можете бесплатно читать онлайн книгу Глоссариум по искусственному интеллекту: 2500 терминов. Том 1 без необходимости искать место, на котором остановились. А еще, у нас можно настроить шрифт и фон для комфортного чтения. Наслаждайтесь любимыми книгами в любое время и в любом месте.
Текст книги
Обычно это область, изучаемая в психологии, робототехнике и искусственном интеллекте. Выбор действий является синонимом принятия решений и поведенческого выбора. Собранные данные исследуются и разбиваются для того, чтобы можно было адаптировать их к искусственным системам, таким как робототехника, видеоигры и программирование искусственного интеллекта[169 - Action selection [Электронный ресурс] https://www.netinbag.com/ URL: https://www.netinbag.com/ru/internet/what-is-action-selection.html (дата обращения: 18.02.2022)].
Выбор переменных (Feature selection) – это выбор признаков, также известный как выбор переменных, выбор атрибутов или выбор подмножества переменных, представляет собой процесс выбора подмножества соответствующих признаков (переменных, предикторов) для использования в построении модели[170 - Feature selection [Электронный ресурс] https://medium.com URL: https://medium.com/@lee.riyal/feature-selection-techniques-snippets-fcc36a7ef55b (дата обращения 28.02.2022)].
Выборка (Sampling) – это использование при анализе информации не всего объема данных, а только их части, которая отбирается по определенным правилам (выборка может быть случайной, стратифицированной, кластерной и квотной).
Выборка кандидатов (Candidate sampling) — это оптимизация времени обучения, при которой вероятность рассчитывается для всех положительных меток, но только для случайной выборки отрицательных меток. Например, если нам нужно определить, является ли входное изображение биглем или ищейкой, нам не нужно указывать вероятности для каждого примера, не связанного с собакой[171 - Candidate sampling [Электронный ресурс] https://developers.
Выбросы (Outliers) – это точки данных, которые значительно отличаются от других, присутствующих в данном наборе данных. Наиболее распространенные причины выбросов в наборе данных: Ошибки ввода данных. Ошибка измерения. Ошибки эксперимента.
Вывод (Inference) в искусственном интеллекте и машинном обучении – это составление прогнозов путем применения обученной модели к немаркированным примерам[173 - Inference [Электронный ресурс] https://www.











