На нашем сайте вы можете читать онлайн «Глоссариум по искусственному интеллекту: 2500 терминов. Том 1». Эта электронная книга доступна бесплатно и представляет собой целую полную версию без сокращений. Кроме того, доступна возможность слушать аудиокнигу, скачать её через торрент в формате fb2 или ознакомиться с кратким содержанием. Жанр книги — Техническая литература. Кроме того, ниже доступно описание произведения, предисловие и отзывы читателей. Регулярные обновления библиотеки и улучшения функционала делают наше сообщество идеальным местом для любителей книг.
Глоссариум по искусственному интеллекту: 2500 терминов. Том 1

Дата выхода
18 августа 2022
Краткое содержание книги Глоссариум по искусственному интеллекту: 2500 терминов. Том 1, аннотация автора и описание
Прежде чем читать книгу целиком, ознакомьтесь с предисловием, аннотацией, описанием или кратким содержанием к произведению Глоссариум по искусственному интеллекту: 2500 терминов. Том 1. Предисловие указано в том виде, в котором его написал автор (Александр Юрьевич Чесалов) в своем труде. Если нужная информация отсутствует, оставьте комментарий, и мы постараемся найти её для вас. Обратите внимание: Читатели могут делиться своими отзывами и обсуждениями, что поможет вам глубже понять книгу. Не забудьте и вы оставить свое впечатие о книге в комментариях внизу страницы.
Описание книги
Дорогой читатель! Вашему вниманию предлагается уникальная книга! Современный глоссарий из более чем 2500 популярных терминов и определений по машинному обучению и искусственному интеллекту. Эта книга написана экспертами-практиками, которые вместе работали над Программой Центра искусственного интеллекта, а также программами «Искусственный интеллект» и «Глубокая аналитика» проекта «Приоритет 2030» в МГТУ им. Н. Э. Баумана в 2021—2022 годах.
Глоссариум по искусственному интеллекту: 2500 терминов. Том 1 читать онлайн полную книгу - весь текст целиком бесплатно
Перед вами текст книги, разбитый на страницы для удобства чтения. Благодаря системе сохранения последней прочитанной страницы, вы можете бесплатно читать онлайн книгу Глоссариум по искусственному интеллекту: 2500 терминов. Том 1 без необходимости искать место, на котором остановились. А еще, у нас можно настроить шрифт и фон для комфортного чтения. Наслаждайтесь любимыми книгами в любое время и в любом месте.
Текст книги
Градиентная обрезка (Gradient clipping) – это метод, позволяющий справиться с проблемой взрывающихся градиентов путем искусственного ограничения (отсечения) максимального значения градиентов при использовании градиентного спуска для обучения модели[226 - Gradient clipping [Электронный ресурс] https://developers.google.com URL: https://developers.google.com/machine-learning/glossary#gradient-clipping (дата обращения: 28.03.2023)].
Градиентный спуск (Gradient descent) – это метод минимизации потерь путем вычисления градиентов потерь по отношению к параметрам модели на основе обучающих данных.
Граница решения (Decision boundary) – это разделитель между классами, изученными моделью в задачах классификации двоичного класса или нескольких классов[228 - Decision boundary [Электронный ресурс] https://developers.
Граница решения или поверхность решения (в статистико-классификационной задаче с двумя классами) (Decision boundary) – это гиперповерхность, разделяющая нижележащее векторное пространство на два множества, по одному для каждого класса.
Граф (Graph) – это таблица, составленная из данных (тензоров) и математических операций. TensorFlow – это библиотека для численных расчетов, в которой данные проходят через граф. Данные в TensorFlow представлены n-мерными массивами – тензорами[229 - Graph [Электронный ресурс] https://developers.
https://developers.google.com/machine-learning/glossary#graph (дата обращения: 28.03.2023)].
Граф (абстрактный тип данных) (Graph) – в информатике граф – это абстрактный тип данных, который предназначен для реализации концепций неориентированного графа и ориентированного графа из математики; в частности, область теории графов[230 - Graph (abstract data type) [Электронный ресурс] www.semanticscholar.org URL: https://www.semanticscholar.











