На нашем сайте вы можете читать онлайн «Глоссариум по искусственному интеллекту: 2500 терминов. Том 1». Эта электронная книга доступна бесплатно и представляет собой целую полную версию без сокращений. Кроме того, доступна возможность слушать аудиокнигу, скачать её через торрент в формате fb2 или ознакомиться с кратким содержанием. Жанр книги — Техническая литература. Кроме того, ниже доступно описание произведения, предисловие и отзывы читателей. Регулярные обновления библиотеки и улучшения функционала делают наше сообщество идеальным местом для любителей книг.
Глоссариум по искусственному интеллекту: 2500 терминов. Том 1

Дата выхода
18 августа 2022
Краткое содержание книги Глоссариум по искусственному интеллекту: 2500 терминов. Том 1, аннотация автора и описание
Прежде чем читать книгу целиком, ознакомьтесь с предисловием, аннотацией, описанием или кратким содержанием к произведению Глоссариум по искусственному интеллекту: 2500 терминов. Том 1. Предисловие указано в том виде, в котором его написал автор (Александр Юрьевич Чесалов) в своем труде. Если нужная информация отсутствует, оставьте комментарий, и мы постараемся найти её для вас. Обратите внимание: Читатели могут делиться своими отзывами и обсуждениями, что поможет вам глубже понять книгу. Не забудьте и вы оставить свое впечатие о книге в комментариях внизу страницы.
Описание книги
Дорогой читатель! Вашему вниманию предлагается уникальная книга! Современный глоссарий из более чем 2500 популярных терминов и определений по машинному обучению и искусственному интеллекту. Эта книга написана экспертами-практиками, которые вместе работали над Программой Центра искусственного интеллекта, а также программами «Искусственный интеллект» и «Глубокая аналитика» проекта «Приоритет 2030» в МГТУ им. Н. Э. Баумана в 2021—2022 годах.
Глоссариум по искусственному интеллекту: 2500 терминов. Том 1 читать онлайн полную книгу - весь текст целиком бесплатно
Перед вами текст книги, разбитый на страницы для удобства чтения. Благодаря системе сохранения последней прочитанной страницы, вы можете бесплатно читать онлайн книгу Глоссариум по искусственному интеллекту: 2500 терминов. Том 1 без необходимости искать место, на котором остановились. А еще, у нас можно настроить шрифт и фон для комфортного чтения. Наслаждайтесь любимыми книгами в любое время и в любом месте.
Текст книги
В графовых базах данных используются узлы для хранения сущностей данных и ребра для хранения взаимосвязей между сущностями. Ребро всегда имеет начальный узел, конечный узел, тип и направление. Ребра могут описывать взаимосвязи типа «родитель-потомок», действия, права владения и т. п. Ограничения на количество и тип взаимосвязей, которые может иметь узел, отсутствуют. Графовые базы данных имеют ряд преимуществ в таких примерах использования, как социальные сети, сервисы рекомендаций и системы выявления мошенничества, когда требуется создавать взаимосвязи между данными и быстро их запрашивать[235 - Graph database (GDB) [Электронный ресурс] https://aws.
Графовые нейронные сети (Graph neural networks) – это класс методов глубокого обучения, предназначенных для выполнения выводов на основе данных, описанных графами. Графовые нейронные сети – это нейронные сети, которые можно напрямую применять к графам и которые обеспечивают простой способ выполнения задач прогнозирования на уровне узлов, ребер и графов.
Графы знаний (Knowledge graphs) – это структуры данных, представляющие знания о реальном мире, включая сущности люди, компании, цифровые активы и т.д.) и их отношения, которые придерживаются модели данных графа – сети узлов (вершин) и соединения (ребер/дуг)[237 - Knowledge graphs (Графы знаний) [Электронный ресурс] https://ru.
Гребенчатая регуляризация (Ridge regularization) – синоним «Регуляризации L
». Термин гребенчатая регуляризация чаще используется в контексте чистой статистики, тогда как регуляризация L
чаще используется в машинном обучении[238 - Ridge regularization [Электронный ресурс] https://developers.google.com
https://developers.google.











