Главная » Техническая литература » Глоссариум по искусственному интеллекту: 2500 терминов. Том 1 (сразу полная версия бесплатно доступна) Александр Юрьевич Чесалов читать онлайн полностью / Библиотека

Глоссариум по искусственному интеллекту: 2500 терминов. Том 1

На нашем сайте вы можете читать онлайн «Глоссариум по искусственному интеллекту: 2500 терминов. Том 1». Эта электронная книга доступна бесплатно и представляет собой целую полную версию без сокращений. Кроме того, доступна возможность слушать аудиокнигу, скачать её через торрент в формате fb2 или ознакомиться с кратким содержанием. Жанр книги — Техническая литература. Кроме того, ниже доступно описание произведения, предисловие и отзывы читателей. Регулярные обновления библиотеки и улучшения функционала делают наше сообщество идеальным местом для любителей книг.

0 баллов
0 мнений
0 чтений

Дата выхода

18 августа 2022

Краткое содержание книги Глоссариум по искусственному интеллекту: 2500 терминов. Том 1, аннотация автора и описание

Прежде чем читать книгу целиком, ознакомьтесь с предисловием, аннотацией, описанием или кратким содержанием к произведению Глоссариум по искусственному интеллекту: 2500 терминов. Том 1. Предисловие указано в том виде, в котором его написал автор (Александр Юрьевич Чесалов) в своем труде. Если нужная информация отсутствует, оставьте комментарий, и мы постараемся найти её для вас. Обратите внимание: Читатели могут делиться своими отзывами и обсуждениями, что поможет вам глубже понять книгу. Не забудьте и вы оставить свое впечатие о книге в комментариях внизу страницы.

Описание книги

Дорогой читатель! Вашему вниманию предлагается уникальная книга! Современный глоссарий из более чем 2500 популярных терминов и определений по машинному обучению и искусственному интеллекту. Эта книга написана экспертами-практиками, которые вместе работали над Программой Центра искусственного интеллекта, а также программами «Искусственный интеллект» и «Глубокая аналитика» проекта «Приоритет 2030» в МГТУ им. Н. Э. Баумана в 2021—2022 годах.

Глоссариум по искусственному интеллекту: 2500 терминов. Том 1 читать онлайн полную книгу - весь текст целиком бесплатно

Перед вами текст книги, разбитый на страницы для удобства чтения. Благодаря системе сохранения последней прочитанной страницы, вы можете бесплатно читать онлайн книгу Глоссариум по искусственному интеллекту: 2500 терминов. Том 1 без необходимости искать место, на котором остановились. А еще, у нас можно настроить шрифт и фон для комфортного чтения. Наслаждайтесь любимыми книгами в любое время и в любом месте.

Текст книги

Шрифт
Размер шрифта
-
+
Межстрочный интервал

В графовых базах данных используются узлы для хранения сущностей данных и ребра для хранения взаимосвязей между сущностями. Ребро всегда имеет начальный узел, конечный узел, тип и направление. Ребра могут описывать взаимосвязи типа «родитель-потомок», действия, права владения и т. п. Ограничения на количество и тип взаимосвязей, которые может иметь узел, отсутствуют. Графовые базы данных имеют ряд преимуществ в таких примерах использования, как социальные сети, сервисы рекомендаций и системы выявления мошенничества, когда требуется создавать взаимосвязи между данными и быстро их запрашивать[235 - Graph database (GDB) [Электронный ресурс] https://aws.

Тут будет реклама 1
amazon.com URL: https://aws.amazon.com/ru/nosql/graph/ (дата обращения: 11.03.2022)].

Графовые нейронные сети (Graph neural networks) – это класс методов глубокого обучения, предназначенных для выполнения выводов на основе данных, описанных графами. Графовые нейронные сети – это нейронные сети, которые можно напрямую применять к графам и которые обеспечивают простой способ выполнения задач прогнозирования на уровне узлов, ребер и графов.

Тут будет реклама 2
GNN могут делать то, что не смогли сделать сверточные нейронные сети (CNN). Также под Графовыми нейронными сетями понимают нейронные модели, которые фиксируют зависимость графов посредством передачи сообщений между узлами графов. В последние годы варианты GNN, такие как сверточная сеть графа (GCN), сеть внимания графа (GAT), рекуррентная сеть графа (GRN), продемонстрировали новаторские характеристики во многих задачах глубокого обучения[236 - Graph neural networks [Электронный ресурс] https://arxiv.
Тут будет реклама 3
org URL: https://arxiv.org/pdf/1812.08434 (дата обращения: 07.07.2022)].

Графы знаний (Knowledge graphs) – это структуры данных, представляющие знания о реальном мире, включая сущности люди, компании, цифровые активы и т.д.) и их отношения, которые придерживаются модели данных графа – сети узлов (вершин) и соединения (ребер/дуг)[237 - Knowledge graphs (Графы знаний) [Электронный ресурс] https://ru.

Тут будет реклама 4
wikipedia.org URL: https://ru.wikipedia.org/wiki/Knowledge_Graph (дата обращения: 28.03.2023)].

Гребенчатая регуляризация (Ridge regularization) – синоним «Регуляризации L

». Термин гребенчатая регуляризация чаще используется в контексте чистой статистики, тогда как регуляризация L

чаще используется в машинном обучении[238 - Ridge regularization [Электронный ресурс] https://developers.google.com

https://developers.google.

Добавить мнение

Ваша оценка

Кликните на изображение чтобы обновить код, если он неразборчив

Мнения

Еще нет комментариев о книге Глоссариум по искусственному интеллекту: 2500 терминов. Том 1, и ваше мнение может быть первым и самым ценным! Расскажите о своих впечатлениях, поделитесь мыслями и отзывами. Ваш отзыв поможет другим читателям сделать правильный выбор. Не стесняйтесь делиться своим мнением!

Другие книги автора

Понравилась эта книга? Познакомьтесь с другими произведениями автора Александр Юрьевич Чесалов! В этом разделе мы собрали для вас другие книги, написанные вашим любимым писателем.

Похожие книги