На нашем сайте вы можете читать онлайн «Математическое моделирование исторической динамики». Эта электронная книга доступна бесплатно и представляет собой целую полную версию без сокращений. Кроме того, доступна возможность слушать аудиокнигу, скачать её через торрент в формате fb2 или ознакомиться с кратким содержанием. Жанр книги — Социология. Кроме того, ниже доступно описание произведения, предисловие и отзывы читателей. Регулярные обновления библиотеки и улучшения функционала делают наше сообщество идеальным местом для любителей книг.
Математическое моделирование исторической динамики

Автор
Жанр
Дата выхода
21 апреля 2023
Краткое содержание книги Математическое моделирование исторической динамики, аннотация автора и описание
Прежде чем читать книгу целиком, ознакомьтесь с предисловием, аннотацией, описанием или кратким содержанием к произведению Математическое моделирование исторической динамики. Предисловие указано в том виде, в котором его написал автор (Олег Евгеньевич Царьков) в своем труде. Если нужная информация отсутствует, оставьте комментарий, и мы постараемся найти её для вас. Обратите внимание: Читатели могут делиться своими отзывами и обсуждениями, что поможет вам глубже понять книгу. Не забудьте и вы оставить свое впечатие о книге в комментариях внизу страницы.
Описание книги
Настоящая работа представляет собой очередной опыт объединения научных достижений в области различных дисциплин (математики, социологии, экономики, истории) с целью описания социально-исторических процессов и оценки перспектив. Отказавшись от детерминистического подхода к анализу событий, предпринята попытка с помощью современного математического аппарата экономики, социологии и кибернетики установить взаимосвязь между различными составляющими общественного развития безотносительно к временному периоду.
Математическое моделирование исторической динамики читать онлайн полную книгу - весь текст целиком бесплатно
Перед вами текст книги, разбитый на страницы для удобства чтения. Благодаря системе сохранения последней прочитанной страницы, вы можете бесплатно читать онлайн книгу Математическое моделирование исторической динамики без необходимости искать место, на котором остановились. А еще, у нас можно настроить шрифт и фон для комфортного чтения. Наслаждайтесь любимыми книгами в любое время и в любом месте.
Текст книги
Множества, характеризующие значения параметров системы на альтернативных траекториях, определяются как аттракторы. В их качестве аттрактора могут выступать состояние равновесия, периодическая траектория и странный аттрактор (хаос). Когда в точке бифуркации происходит катастрофа, систему (или её часть) притягивает один из аттракторов, и она в точке бифуркации может стать хаотической и разрушиться, перейти в состояние равновесия или выбрать путь формирования новой упорядоченности, т.
Как правило, неустойчивость возникает в виде нестандартного воздействия на систему или появлении нового компонента. В точке бифуркации неустойчивость усиливается благодаря колебаниям системы. Подавляемые в устойчивом состоянии, они в результате нелинейных процессов переводят параметры системы за критические значения и инициируют скачкообразный переход в новое устойчивое состояние с меньшей энтропией. После этого цикл "плавное развитие – скачок", "эволюция – революция", "устойчивость – неустойчивость" повторяется.
Противоречие между консервативными и активными частями системы постепенно нарастает и приводит к тому, что даже малые флуктуации приводят к катастрофе. В революционной фазе поведение системы и её отдельных элементов приобретает труднопредсказуемый характер. Такое неадекватное поведение вызывается не только внутренними флуктуациями, силу и направленность которых можно прогнозировать на основании истории развития и современного состояния, но и внешними, имеющими случайный характер.
Таким образом, триггером развития системы являются качественные изменения, вызванные квазидиалектическими противоречиями. Гегель называл импульсом и двигателем процесса развития считал ислючительно внутренние противоречия системы, но игнорировал внешние.










