На нашем сайте вы можете читать онлайн «Математическое моделирование исторической динамики». Эта электронная книга доступна бесплатно и представляет собой целую полную версию без сокращений. Кроме того, доступна возможность слушать аудиокнигу, скачать её через торрент в формате fb2 или ознакомиться с кратким содержанием. Жанр книги — Социология. Кроме того, ниже доступно описание произведения, предисловие и отзывы читателей. Регулярные обновления библиотеки и улучшения функционала делают наше сообщество идеальным местом для любителей книг.
Математическое моделирование исторической динамики

Автор
Жанр
Дата выхода
21 апреля 2023
Краткое содержание книги Математическое моделирование исторической динамики, аннотация автора и описание
Прежде чем читать книгу целиком, ознакомьтесь с предисловием, аннотацией, описанием или кратким содержанием к произведению Математическое моделирование исторической динамики. Предисловие указано в том виде, в котором его написал автор (Олег Евгеньевич Царьков) в своем труде. Если нужная информация отсутствует, оставьте комментарий, и мы постараемся найти её для вас. Обратите внимание: Читатели могут делиться своими отзывами и обсуждениями, что поможет вам глубже понять книгу. Не забудьте и вы оставить свое впечатие о книге в комментариях внизу страницы.
Описание книги
Настоящая работа представляет собой очередной опыт объединения научных достижений в области различных дисциплин (математики, социологии, экономики, истории) с целью описания социально-исторических процессов и оценки перспектив. Отказавшись от детерминистического подхода к анализу событий, предпринята попытка с помощью современного математического аппарата экономики, социологии и кибернетики установить взаимосвязь между различными составляющими общественного развития безотносительно к временному периоду.
Математическое моделирование исторической динамики читать онлайн полную книгу - весь текст целиком бесплатно
Перед вами текст книги, разбитый на страницы для удобства чтения. Благодаря системе сохранения последней прочитанной страницы, вы можете бесплатно читать онлайн книгу Математическое моделирование исторической динамики без необходимости искать место, на котором остановились. А еще, у нас можно настроить шрифт и фон для комфортного чтения. Наслаждайтесь любимыми книгами в любое время и в любом месте.
Текст книги
Следовательно, при наличии нескольких альтернатив будущее вероятностно неоднозначно, но вместе с тем, оно не может быть любым. В этом случае возникает задача выбора наиболее приемлемого для системы аттрактора. В редких случаях она решается осознанно, но чаще всего[124 - для большей части протекающих физических процессов] – случайно. В этом случае особую актуальность приобретает оценка вероятности различных вариантов исхода катастрофы.
В точках бифуркации поведение незакрытых систем имеет следующие общие закономерности:
1.
2. Существует множество потенциальных траекторий развития системы. Чем более она неравновесна, тем больше у неё имеется потенциальных траекторий и, соответственно, предельных циклов.
3. Вследствие случайного характера воздействия среды точно определить новое состояние невозможно, что связано с тем, что влияние среды носит случайный характер (это не исключает детерминизма между точками бифуркации). Н.Д. Кондратьев полагал, что случайность не может быть поставлена рядом с категорией причинности: её следует отнести к особенностям мышления, чем считать категорией бытия. Поэтому случайными он считал такие иррегулярные события, причины которых при данном состоянии научного знания и его средств не могут быть определены.
4. Катастрофа изменяет организованность системы, не всегда в сторону ее увеличения. Изменения размерности и сложности системы влияют на количество состояний, при которых может произойти катастрофа, число возможных траекторий развития и, как следствие, аттракторов.
5. Выбор того или иного аттрактора происходит на основании принципа минимальной диссипации: из совокупности допустимых состояний системы реализуется то, которому отвечает минимальное рассеяние энергии или минимальный прирост энтропии.
6.










