На нашем сайте вы можете читать онлайн «Интеллект завтрашнего дня: Путеводитель по миру искусственного интеллекта». Эта электронная книга доступна бесплатно и представляет собой целую полную версию без сокращений. Кроме того, доступна возможность слушать аудиокнигу, скачать её через торрент в формате fb2 или ознакомиться с кратким содержанием. Жанр книги — Бизнес-книги, О бизнесе популярно, Просто о бизнесе. Кроме того, ниже доступно описание произведения, предисловие и отзывы читателей. Регулярные обновления библиотеки и улучшения функционала делают наше сообщество идеальным местом для любителей книг.
Интеллект завтрашнего дня: Путеводитель по миру искусственного интеллекта

Автор
Дата выхода
17 апреля 2024
Краткое содержание книги Интеллект завтрашнего дня: Путеводитель по миру искусственного интеллекта, аннотация автора и описание
Прежде чем читать книгу целиком, ознакомьтесь с предисловием, аннотацией, описанием или кратким содержанием к произведению Интеллект завтрашнего дня: Путеводитель по миру искусственного интеллекта. Предисловие указано в том виде, в котором его написал автор (Алексей Меретин) в своем труде. Если нужная информация отсутствует, оставьте комментарий, и мы постараемся найти её для вас. Обратите внимание: Читатели могут делиться своими отзывами и обсуждениями, что поможет вам глубже понять книгу. Не забудьте и вы оставить свое впечатие о книге в комментариях внизу страницы.
Описание книги
«Интеллект завтрашнего дня: Путеводитель по миру искусственного интеллекта» — это захватывающее погружение в мир искусственного интеллекта, технологии, которая переопределяет границы возможного. Эта книга служит экспертным руководством по актуальным и будущим применениям ИИ, раскрывая его влияние на нашу жизнь, работу и общество. Эта книга предназначена для всех, кто стремится глубже понять ИИ и его роль в формировании нашего будущего.
Интеллект завтрашнего дня: Путеводитель по миру искусственного интеллекта читать онлайн полную книгу - весь текст целиком бесплатно
Перед вами текст книги, разбитый на страницы для удобства чтения. Благодаря системе сохранения последней прочитанной страницы, вы можете бесплатно читать онлайн книгу Интеллект завтрашнего дня: Путеводитель по миру искусственного интеллекта без необходимости искать место, на котором остановились. А еще, у нас можно настроить шрифт и фон для комфортного чтения. Наслаждайтесь любимыми книгами в любое время и в любом месте.
Текст книги
Исследования сосредоточены на создании ответственного и прозрачного ИИ, а также на изучении потенциала ИИ для решения глобальных проблем.
История ИИ – это история чередования периодов оптимизма и скептицизма, инноваций и прорывов, которая продолжает развиваться с каждым десятилетием.
– Основные концепции и терминология
В области искусственного интеллекта существует множество концепций и терминов, которые помогают описать различные аспекты этой широкой и многофасетной дисциплины. Вот некоторые из основных концепций и терминов:
1.
2. Обучение с учителем (Supervised Learning): Тип машинного обучения, при котором модель обучается на основе входных данных и соответствующих им выходных данных, предоставленных человеком.
3. Обучение без учителя (Unsupervised Learning): Тип машинного обучения, при котором модель ищет скрытые структуры в данных без явных инструкций о том, что представляют собой эти структуры.
4. Обучение с подкреплением (Reinforcement Learning): Тип машинного обучения, при котором агент учится принимать решения, выполняя действия в среде и получая положительные или отрицательные награды.
5. Нейронная сеть (Neural Network): Вычислительная модель, вдохновленная структурой мозга, состоящая из слоев нейронов, которые обрабатывают данные и передают сигналы.
6. Глубокое обучение (Deep Learning): Подмножество машинного обучения, использующее сложные нейронные сети с множеством слоев (глубокие нейронные сети) для анализа данных.
7. Искусственный нейрон (Artificial Neuron): Основная вычислительная единица нейронной сети, имитирующая работу биологического нейрона.
8. Функция активации (Activation Function): Функция в искусственном нейроне, которая определяет, насколько сильно будет активирован нейрон в ответ на входные данные.
9. Обратное распространение (Backpropagation): Метод обучения нейронных сетей, при котором ошибка выходных данных используется для корректировки весов сети.
10. Переобучение (Overfitting): Ситуация, когда модель машинного обучения слишком точно подстроена под тренировочные данные и плохо работает на новых данных.
11. Регуляризация (Regularization): Техники, используемые для предотвращения переобучения модели путем наказания модели за слишком сложные или большие веса.
12.







