Главная » Бизнес-книги » Оценка качества моделей машинного обучения: выбор, интерпретация и применение метрик (сразу полная версия бесплатно доступна) Алексей Михнин читать онлайн полностью / Библиотека

Оценка качества моделей машинного обучения: выбор, интерпретация и применение метрик

На нашем сайте вы можете читать онлайн «Оценка качества моделей машинного обучения: выбор, интерпретация и применение метрик». Эта электронная книга доступна бесплатно и представляет собой целую полную версию без сокращений. Кроме того, доступна возможность слушать аудиокнигу, скачать её через торрент в формате fb2 или ознакомиться с кратким содержанием. Жанр книги — Бизнес-книги, О бизнесе популярно, Инновации в бизнесе. Кроме того, ниже доступно описание произведения, предисловие и отзывы читателей. Регулярные обновления библиотеки и улучшения функционала делают наше сообщество идеальным местом для любителей книг.

0 баллов
0 мнений
1 чтение

Дата выхода

08 сентября 2023

Краткое содержание книги Оценка качества моделей машинного обучения: выбор, интерпретация и применение метрик, аннотация автора и описание

Прежде чем читать книгу целиком, ознакомьтесь с предисловием, аннотацией, описанием или кратким содержанием к произведению Оценка качества моделей машинного обучения: выбор, интерпретация и применение метрик. Предисловие указано в том виде, в котором его написал автор (Алексей Михнин) в своем труде. Если нужная информация отсутствует, оставьте комментарий, и мы постараемся найти её для вас. Обратите внимание: Читатели могут делиться своими отзывами и обсуждениями, что поможет вам глубже понять книгу. Не забудьте и вы оставить свое впечатие о книге в комментариях внизу страницы.

Описание книги

В данной книге рассматриваются метрики качества моделей машинного обучения, обеспечивая понимание их выбора, интерпретации и применения. Описываются различные метрики, их особенности и применение в задачах машинного обучения. Книга содержит практические примеры использования метрик для наглядности. Она будет полезна специалистам в области машинного обучения, бизнес-аналитикам и новичкам, желающим освоить оценку качества моделей и принимать обоснованные решения на основе анализа результатов моделирования.

Оценка качества моделей машинного обучения: выбор, интерпретация и применение метрик читать онлайн полную книгу - весь текст целиком бесплатно

Перед вами текст книги, разбитый на страницы для удобства чтения. Благодаря системе сохранения последней прочитанной страницы, вы можете бесплатно читать онлайн книгу Оценка качества моделей машинного обучения: выбор, интерпретация и применение метрик без необходимости искать место, на котором остановились. А еще, у нас можно настроить шрифт и фон для комфортного чтения. Наслаждайтесь любимыми книгами в любое время и в любом месте.

Текст книги

Шрифт
Размер шрифта
-
+
Межстрочный интервал

Рассчитайте полноту как отношение TP к общему числу положительных примеров (TP + FN):

Recall = TP / (TP + FN) = 80 / (80 + 20) = 0.8 = 80%

Таким образом, в данном примере модель правильно определила 80 из 100 спам-писем, что соответствует полноте в 80%.

Пример № 2: Представьте, что вы работаете аналитиком в интернет-магазине, который хочет улучшить свой алгоритм рекомендаций товаров пользователям. Вы хотите проверить, насколько хорошо работает текущий алгоритм и решаете посчитать метрику полноты для одной из категорий товаров – "электроника".

Для этого вы берете случайную выборку из 200 пользователей, которые просмотрели товары в категории "электроника" на вашем сайте за последний месяц. После того, как вы применили алгоритм рекомендаций, вы получили следующие результаты:

Из 200 пользователей 120 купили хотя бы один рекомендованный товар в категории "электроника" (TP).

Из 200 пользователей 80 не купили ни одного рекомендованного товара в категории "электроника" (FN).

Рассчитайте метрику полноты (recall) для категории "электроника".

Решение:

TP = 120 (пользователи, которые купили хотя бы один рекомендованный товар в категории "электроника") FN = 80 (пользователи, которые не купили ни одного рекомендованного товара в категории "электроника")

Recall = TP / (TP + FN) = 120 / (120 + 80) = 0.6 = 60%

Метрика полноты для категории "электроника" составляет 60%.

Это означает, что ваш текущий алгоритм рекомендаций смог правильно найти 60% всех пользователей, которые купили товары в этой категории за последний месяц. Вам следует анализировать результаты и работать над улучшением алгоритма, чтобы повысить метрику полноты и увеличить долю пользователей, которым будут рекомендованы интересные товары в категории "электроника".

Метрика F1-score (F-мера)

Метрика F1-score (F-мера) – это совместная метрика для оценки качества алгоритма классификации, которая учитывает обе метрики Precision (Точность) и Recall (Полнота).

F1-score является гармоническим средним между Precision и Recall, что делает эту метрику более сбалансированной, чем каждая из них по отдельности. F1-score особенно полезна в случаях, когда классы в данных несбалансированы или когда ошибки первого и второго рода имеют схожую важность.

Добавить мнение

Ваша оценка

Кликните на изображение чтобы обновить код, если он неразборчив

Мнения

Еще нет комментариев о книге Оценка качества моделей машинного обучения: выбор, интерпретация и применение метрик, и ваше мнение может быть первым и самым ценным! Расскажите о своих впечатлениях, поделитесь мыслями и отзывами. Ваш отзыв поможет другим читателям сделать правильный выбор. Не стесняйтесь делиться своим мнением!

Другие книги автора

Понравилась эта книга? Познакомьтесь с другими произведениями автора Алексей Михнин! В этом разделе мы собрали для вас другие книги, написанные вашим любимым писателем.

Похожие книги