Главная » Бизнес-книги » Оценка качества моделей машинного обучения: выбор, интерпретация и применение метрик (сразу полная версия бесплатно доступна) Алексей Михнин читать онлайн полностью / Библиотека

Оценка качества моделей машинного обучения: выбор, интерпретация и применение метрик

На нашем сайте вы можете читать онлайн «Оценка качества моделей машинного обучения: выбор, интерпретация и применение метрик». Эта электронная книга доступна бесплатно и представляет собой целую полную версию без сокращений. Кроме того, доступна возможность слушать аудиокнигу, скачать её через торрент в формате fb2 или ознакомиться с кратким содержанием. Жанр книги — Бизнес-книги, О бизнесе популярно, Инновации в бизнесе. Кроме того, ниже доступно описание произведения, предисловие и отзывы читателей. Регулярные обновления библиотеки и улучшения функционала делают наше сообщество идеальным местом для любителей книг.

0 баллов
0 мнений
1 чтение

Дата выхода

08 сентября 2023

Краткое содержание книги Оценка качества моделей машинного обучения: выбор, интерпретация и применение метрик, аннотация автора и описание

Прежде чем читать книгу целиком, ознакомьтесь с предисловием, аннотацией, описанием или кратким содержанием к произведению Оценка качества моделей машинного обучения: выбор, интерпретация и применение метрик. Предисловие указано в том виде, в котором его написал автор (Алексей Михнин) в своем труде. Если нужная информация отсутствует, оставьте комментарий, и мы постараемся найти её для вас. Обратите внимание: Читатели могут делиться своими отзывами и обсуждениями, что поможет вам глубже понять книгу. Не забудьте и вы оставить свое впечатие о книге в комментариях внизу страницы.

Описание книги

В данной книге рассматриваются метрики качества моделей машинного обучения, обеспечивая понимание их выбора, интерпретации и применения. Описываются различные метрики, их особенности и применение в задачах машинного обучения. Книга содержит практические примеры использования метрик для наглядности. Она будет полезна специалистам в области машинного обучения, бизнес-аналитикам и новичкам, желающим освоить оценку качества моделей и принимать обоснованные решения на основе анализа результатов моделирования.

Оценка качества моделей машинного обучения: выбор, интерпретация и применение метрик читать онлайн полную книгу - весь текст целиком бесплатно

Перед вами текст книги, разбитый на страницы для удобства чтения. Благодаря системе сохранения последней прочитанной страницы, вы можете бесплатно читать онлайн книгу Оценка качества моделей машинного обучения: выбор, интерпретация и применение метрик без необходимости искать место, на котором остановились. А еще, у нас можно настроить шрифт и фон для комфортного чтения. Наслаждайтесь любимыми книгами в любое время и в любом месте.

Текст книги

Шрифт
Размер шрифта
-
+
Межстрочный интервал

Метрика F1-score рассчитывается следующим образом:

F1-score = 2 * (Precision * Recall) / (Precision + Recall)

где:

Precision = TP / (TP + FP) – точность;

Recall = TP / (TP + FN) – полнота;

TP (True Positives) – количество правильно классифицированных положительных объектов;

FP (False Positives) – количество неправильно классифицированных положительных объектов (ложные срабатывания);

FN (False Negatives) – количество неправильно классифицированных положительных объектов (пропущенные срабатывания).

F1-score принимает значения в диапазоне от 0 до 1 (или от 0% до 100%). Чем ближе значение F1-score к 1 (или 100%), тем лучше модель справляется с задачей классификации, учитывая обе метрики Precision и Recall. Если F1-score равен 0, это означает, что модель полностью не справляется с задачей классификации.

Пример № 1: В задаче определения, является ли человек носителем определенной генетической мутации, модель должна быть высоко точной и полной.

Если точность модели равна 90%, а полнота – 80%, то F1-score будет равен 84%.

давайте распишем пошаговое решение для метрики F1-score (F-мера) на примере 1:

Рассчитайте точность и полноту модели, используя соответствующие формулы:

Precision = TP / (TP + FP) Recall = TP / (TP + FN)

В данном примере, точность = 0.9 (или 90%) и полнота = 0.8 (или 80%).

Рассчитайте F1-score как гармоническое среднее точности и полноты:

F1-score = 2 * (Precision * Recall) / (Precision + Recall)

F1-score = 2 * (0.

9 * 0.8) / (0.9 + 0.8) = 0.84 (или 84%)

Таким образом, в данном примере F1-score равен 84%.

Мы получили F1-score равный 84%, что указывает на то, что модель демонстрирует неплохую производительность с учетом обеих метрик (точность и полнота). Это позволяет оценить модель с более сбалансированной точки зрения по сравнению с использованием только одной из метрик.

Пример № 2: В задаче определения, является ли новость фейковой или нет, модель должна быть высоко точной и полной.

Если точность модели равна 85%, а полнота – 90%, то F1-score будет равен 87.5%.

давайте рассмотрим пошаговое решение для метрики F1-score (F-мера) на примере 2:

Рассчитайте точность и полноту модели, используя соответствующие формулы:

Precision = TP / (TP + FP) Recall = TP / (TP + FN)

В данном примере, точность = 0.85 (или 85%) и полнота = 0.9 (или 90%).

Добавить мнение

Ваша оценка

Кликните на изображение чтобы обновить код, если он неразборчив

Мнения

Еще нет комментариев о книге Оценка качества моделей машинного обучения: выбор, интерпретация и применение метрик, и ваше мнение может быть первым и самым ценным! Расскажите о своих впечатлениях, поделитесь мыслями и отзывами. Ваш отзыв поможет другим читателям сделать правильный выбор. Не стесняйтесь делиться своим мнением!

Другие книги автора

Понравилась эта книга? Познакомьтесь с другими произведениями автора Алексей Михнин! В этом разделе мы собрали для вас другие книги, написанные вашим любимым писателем.

Похожие книги