На нашем сайте вы можете читать онлайн «Табличное мастерство. Осваиваем модели машинного обучения для анализа табличных данных». Эта электронная книга доступна бесплатно и представляет собой целую полную версию без сокращений. Кроме того, доступна возможность слушать аудиокнигу, скачать её через торрент в формате fb2 или ознакомиться с кратким содержанием. Жанр книги — Техническая литература. Кроме того, ниже доступно описание произведения, предисловие и отзывы читателей. Регулярные обновления библиотеки и улучшения функционала делают наше сообщество идеальным местом для любителей книг.
Табличное мастерство. Осваиваем модели машинного обучения для анализа табличных данных

Автор
Дата выхода
08 сентября 2023
Краткое содержание книги Табличное мастерство. Осваиваем модели машинного обучения для анализа табличных данных, аннотация автора и описание
Прежде чем читать книгу целиком, ознакомьтесь с предисловием, аннотацией, описанием или кратким содержанием к произведению Табличное мастерство. Осваиваем модели машинного обучения для анализа табличных данных. Предисловие указано в том виде, в котором его написал автор (Алексей Михнин) в своем труде. Если нужная информация отсутствует, оставьте комментарий, и мы постараемся найти её для вас. Обратите внимание: Читатели могут делиться своими отзывами и обсуждениями, что поможет вам глубже понять книгу. Не забудьте и вы оставить свое впечатие о книге в комментариях внизу страницы.
Описание книги
Машинное обучение становится ключевым фактором успеха в повседневной жизни, бизнесе и науке. Эта книга - комплексное руководство по анализу табличных данных с помощью машинного обучения. Она полезна для бизнеса, руководителей проектов и всех, кто интересуется данной темой. Книга рассматривает классические алгоритмы, ансамблирование, AutoML и нейронные сети. Охватывает предобработку данных, отбор признаков, разработку и валидацию моделей, внедрение и мониторинг решений, а также этику и законодательные требования. Практические примеры и пошаговые инструкции помогут разобраться в процессе разработки проектов машинного обучения. Книга подходит для людей с разным уровнем опыта, от новичков до опытных специалистов, предлагая материалы различного уровня сложности.
Табличное мастерство. Осваиваем модели машинного обучения для анализа табличных данных читать онлайн полную книгу - весь текст целиком бесплатно
Перед вами текст книги, разбитый на страницы для удобства чтения. Благодаря системе сохранения последней прочитанной страницы, вы можете бесплатно читать онлайн книгу Табличное мастерство. Осваиваем модели машинного обучения для анализа табличных данных без необходимости искать место, на котором остановились. А еще, у нас можно настроить шрифт и фон для комфортного чтения. Наслаждайтесь любимыми книгами в любое время и в любом месте.
Текст книги
Цели:
Повысить производительность моделей путем оптимизации их гиперпараметров
Задачи:
Применить различные методы поиска и оптимизации гиперпараметров
Сравнить результаты и выбрать оптимальные значения гиперпараметров
Документы:
Отчет о тюнинге гиперпараметров и оптимизации моделей, включающий результаты экспериментов и выбранные оптимальные значения гиперпараметров
Валидация и тестирование моделей:
На этом этапе команда проверяет модели на новых данных, чтобы оценить их обобщающую способность и производительность в реальных условиях.
Цели:
Проверить модели на новых данных для оценки их обобщающей способности и производительности в реальных условиях
Задачи:
Разделить данные на обучающую, валидационную и тестовую выборки
Провести тестирование моделей на тестовых данных и оценить их производительность
Документы:
Отчет о валидации и тестировании моделей, содержащий результаты тестирования и выводы о производительности моделей
Внедрение моделей в продакшн:
После успешного тестирования и валидации модели интегрируются в рабочую среду, где они будут использоваться для прогнозирования и автоматизации решений.
Цели:
Интегрировать модели в рабочую среду для их использования в решении реальных задач
Задачи:
Разработать и протестировать API или другой интерфейс для взаимодействия с моделями
Организовать инфраструктуру для развертывания и поддержки моделей
Документы:
Отчет о внедрении моделей в продакшн, описывающий процесс интеграции, используемые технологии и результаты тестирования интеграции
Мониторинг и обновление моделей:
На этом этапе команда следит за производительностью модели в продакшне, анализирует возникающие проблемы и периодически обновляет модели для адаптации к изменяющимся условиям и требованиям.
Цели:
Обеспечить стабильную работу моделей и их адаптацию к изменяющимся условиям
Задачи:
Мониторить производительность моделей и анализировать возникающие проблемы
Периодически обновлять модели для адаптации к новым данным и требованиям
Документы:
Отчет о мониторинге и обновлении моделей, содержащий результаты анализа производительности и информацию об обновлениях
Документация и обучение пользователей:
Команда разрабатывает документацию, описывающую модели, их функционирование и принципы работы.








