На нашем сайте вы можете читать онлайн «Табличное мастерство. Осваиваем модели машинного обучения для анализа табличных данных». Эта электронная книга доступна бесплатно и представляет собой целую полную версию без сокращений. Кроме того, доступна возможность слушать аудиокнигу, скачать её через торрент в формате fb2 или ознакомиться с кратким содержанием. Жанр книги — Техническая литература. Кроме того, ниже доступно описание произведения, предисловие и отзывы читателей. Регулярные обновления библиотеки и улучшения функционала делают наше сообщество идеальным местом для любителей книг.
Табличное мастерство. Осваиваем модели машинного обучения для анализа табличных данных

Автор
Дата выхода
08 сентября 2023
Краткое содержание книги Табличное мастерство. Осваиваем модели машинного обучения для анализа табличных данных, аннотация автора и описание
Прежде чем читать книгу целиком, ознакомьтесь с предисловием, аннотацией, описанием или кратким содержанием к произведению Табличное мастерство. Осваиваем модели машинного обучения для анализа табличных данных. Предисловие указано в том виде, в котором его написал автор (Алексей Михнин) в своем труде. Если нужная информация отсутствует, оставьте комментарий, и мы постараемся найти её для вас. Обратите внимание: Читатели могут делиться своими отзывами и обсуждениями, что поможет вам глубже понять книгу. Не забудьте и вы оставить свое впечатие о книге в комментариях внизу страницы.
Описание книги
Машинное обучение становится ключевым фактором успеха в повседневной жизни, бизнесе и науке. Эта книга - комплексное руководство по анализу табличных данных с помощью машинного обучения. Она полезна для бизнеса, руководителей проектов и всех, кто интересуется данной темой. Книга рассматривает классические алгоритмы, ансамблирование, AutoML и нейронные сети. Охватывает предобработку данных, отбор признаков, разработку и валидацию моделей, внедрение и мониторинг решений, а также этику и законодательные требования. Практические примеры и пошаговые инструкции помогут разобраться в процессе разработки проектов машинного обучения. Книга подходит для людей с разным уровнем опыта, от новичков до опытных специалистов, предлагая материалы различного уровня сложности.
Табличное мастерство. Осваиваем модели машинного обучения для анализа табличных данных читать онлайн полную книгу - весь текст целиком бесплатно
Перед вами текст книги, разбитый на страницы для удобства чтения. Благодаря системе сохранения последней прочитанной страницы, вы можете бесплатно читать онлайн книгу Табличное мастерство. Осваиваем модели машинного обучения для анализа табличных данных без необходимости искать место, на котором остановились. А еще, у нас можно настроить шрифт и фон для комфортного чтения. Наслаждайтесь любимыми книгами в любое время и в любом месте.
Текст книги
Этапы типовых проектов по машинному обучению
Внедрение проектов машинного обучения может быть сложным процессом, требующим знаний и опыта, а также взаимодействия между различными командами и отделами. Обычно для внедрения таких проектов используется методология, состоящая из нескольких этапов, которая гарантирует эффективность и успешность проекта.
Определение проблемы и целей проекта:
На этом этапе команда определяет конкретные проблемы, которые должны быть решены с помощью машинного обучения, а также формулирует цели и ожидаемые результаты проекта.
Цели:
Определить проблемы, которые должны быть решены с помощью машинного обучения
Сформулировать цели и ожидаемые результаты проекта
Задачи:
Согласовать проблемы и цели с заинтересованными сторонами
Определить метрики для измерения успеха проекта
Документы:
Техническое задание (Project Charter) с описанием проблемы и целей проекта
Сбор и подготовка данных:
Качество данных является ключевым фактором успеха в машинном обучении.
Цели:
Собрать данные, необходимые для обучения и валидации моделей
Подготовить данные к анализу и использованию в моделях машинного обучения
Задачи:
Очистить данные от ошибок и пропущенных значений
Обработать категориальные и числовые признаки
Документы:
Отчет о сборе и подготовке данных, описывающий процесс и результаты работы с данными
Разработка и обучение моделей:
На этом этапе команда разрабатывает и обучает модели машинного обучения, используя выбранные алгоритмы и подходы.
Цели:
Разработать и обучить модели машинного обучения
Оценить качество моделей и выбрать наилучшую
Задачи:
Выбрать подходящие алгоритмы машинного обучения
Обучить модели и провести первичную оценку их качества
Документы:
Отчет о разработке и обучении моделей, содержащий описание используемых алгоритмов, параметров моделей и результатов оценки качества
Тюнинг гиперпараметров и оптимизация моделей:
Для повышения производительности модели проводят тюнинг гиперпараметров, используя различные методы поиска и оптимизации.








