На нашем сайте вы можете читать онлайн «Нейросети. Обработка аудиоданных». Эта электронная книга доступна бесплатно и представляет собой целую полную версию без сокращений. Кроме того, доступна возможность слушать аудиокнигу, скачать её через торрент в формате fb2 или ознакомиться с кратким содержанием. Жанр книги — Знания и навыки, Компьютерная литература, Программирование. Кроме того, ниже доступно описание произведения, предисловие и отзывы читателей. Регулярные обновления библиотеки и улучшения функционала делают наше сообщество идеальным местом для любителей книг.
Нейросети. Обработка аудиоданных

Автор
Дата выхода
22 октября 2023
Краткое содержание книги Нейросети. Обработка аудиоданных, аннотация автора и описание
Прежде чем читать книгу целиком, ознакомьтесь с предисловием, аннотацией, описанием или кратким содержанием к произведению Нейросети. Обработка аудиоданных. Предисловие указано в том виде, в котором его написал автор (Джейд Картер) в своем труде. Если нужная информация отсутствует, оставьте комментарий, и мы постараемся найти её для вас. Обратите внимание: Читатели могут делиться своими отзывами и обсуждениями, что поможет вам глубже понять книгу. Не забудьте и вы оставить свое впечатие о книге в комментариях внизу страницы.
Описание книги
Эта книга — отличный ресурс для тех, кто желает углубиться в мир аудиоанализа с применением современных методов машинного обучения и нейронных сетей. Подойдет как для начинающих так и для уже опытных пользователей. Вы познакомитесь с распознаванием речи, научитесь создавать акустические модели и оптимизировать их для точного распознавания. Книга также рассматривает методы фильтрации и улучшения аудиосигналов, а также исследует музыкальный анализ, включая распознавание инструментов и характеристик композиций. Вы узнаете, как извлекать признаки из аудиоданных и использовать сверточные нейросети для аудиоанализа. Главы о генеративных моделях и синтезе звука предоставят вам инструменты для создания звуковых данных. Дополнительно, книга исследует обучение на неразмеченных данных и стратегии активного обучения.
Нейросети. Обработка аудиоданных читать онлайн полную книгу - весь текст целиком бесплатно
Перед вами текст книги, разбитый на страницы для удобства чтения. Благодаря системе сохранения последней прочитанной страницы, вы можете бесплатно читать онлайн книгу Нейросети. Обработка аудиоданных без необходимости искать место, на котором остановились. А еще, у нас можно настроить шрифт и фон для комфортного чтения. Наслаждайтесь любимыми книгами в любое время и в любом месте.
Текст книги
Он разбивает аудиосигнал на его составляющие частоты, что означает, что каждая частота в спектре представляет собой определенную частотную компоненту, присутствующую в сигнале. Спектр также предоставляет информацию о том, с какой амплитудой каждая частота представлена в аудиосигнале, что позволяет определить вклад каждой частоты в звучание сигнала.
Анализ спектра имеет широкое практическое применение в аудиообработке. Он позволяет выполнять задачи, такие как эквалайзинг (регулирование частотных компонент), обнаружение и устранение шумовых составляющих, анализ и классификацию аудиосигналов.
Эти понятия являются фундаментальными для аудиообработки и аудиоанализа.
2.2. Рассмотрение методов анализа аудиосигналов, таких как преобразование Фурье и вейвлет-преобразование
Для анализа аудиосигналов и выделения их характеристик используются различные методы, включая преобразование Фурье и вейвлет-преобразование.
Преобразование Фурье
Преобразование Фурье (или Фурье-преобразование) представляет собой ключевой метод анализа аудиосигналов и является неотъемлемой частью современной аудиообработки и аудиоанализа.
Принцип Преобразования Фурье:
Принцип Преобразования Фурье основан на математическом представлении аудиосигнала в частотной области. Давайте рассмотрим его математическую суть более подробно.
Предположим, у нас есть аудиосигнал, представленный как функция амплитуды от времени, обозначим его как f(t), где t – время.
Интуитивно, этот интеграл анализирует, как разные частоты ? влияют на исходный сигнал. Результатом является функция спектра, которая показывает, какие частоты присутствуют в сигнале и с какой амплитудой.











