На нашем сайте вы можете читать онлайн «OpenCV от NemtyrevAI. Обнаружение объектов в компьютерном зрении, методы алгоритмы приложения + реальные примеры кода». Эта электронная книга доступна бесплатно и представляет собой целую полную версию без сокращений. Кроме того, доступна возможность слушать аудиокнигу, скачать её через торрент в формате fb2 или ознакомиться с кратким содержанием. Жанр книги — Детские книги, Школьные учебники, Школьные учебники по информатике. Кроме того, ниже доступно описание произведения, предисловие и отзывы читателей. Регулярные обновления библиотеки и улучшения функционала делают наше сообщество идеальным местом для любителей книг.
OpenCV от NemtyrevAI. Обнаружение объектов в компьютерном зрении, методы алгоритмы приложения + реальные примеры кода

Автор
Дата выхода
05 мая 2024
Краткое содержание книги OpenCV от NemtyrevAI. Обнаружение объектов в компьютерном зрении, методы алгоритмы приложения + реальные примеры кода, аннотация автора и описание
Прежде чем читать книгу целиком, ознакомьтесь с предисловием, аннотацией, описанием или кратким содержанием к произведению OpenCV от NemtyrevAI. Обнаружение объектов в компьютерном зрении, методы алгоритмы приложения + реальные примеры кода. Предисловие указано в том виде, в котором его написал автор (NemtyrevAI) в своем труде. Если нужная информация отсутствует, оставьте комментарий, и мы постараемся найти её для вас. Обратите внимание: Читатели могут делиться своими отзывами и обсуждениями, что поможет вам глубже понять книгу. Не забудьте и вы оставить свое впечатие о книге в комментариях внизу страницы.
Описание книги
Книга состоит из семи глав. В первой главе мы кратко обсудим основные концепции компьютерного зрения и задачи обнаружения объектов. Во второй главе мы рассмотрим традиционные методы обнаружения объектов, основанные на признаках, такие как метод Хаара и метод гистограмм направленных градиентов (HOG). В третьей главе мы обсудим современные методы обнаружения объектов, основанные на глубоком обучении, такие как R-CNN, Fast R-CNN, Faster R-CNN и YOLO. В четвертой главе мы рассмотрим способы усовершенствования методов обнаружения объектов, такие как использование предварительного обучения, ансамблевых методов и повышение качества данных. В пятой главе мы обсудим приложения обнаружения объектов в различных областях, таких как автономное вождение, видеонаблюдение, медицинская визуализация, управление производством и робототехника. В шестой и седьмой главе создадим приложения AI MEDIC для распознавания объектов.
OpenCV от NemtyrevAI. Обнаружение объектов в компьютерном зрении, методы алгоритмы приложения + реальные примеры кода читать онлайн полную книгу - весь текст целиком бесплатно
Перед вами текст книги, разбитый на страницы для удобства чтения. Благодаря системе сохранения последней прочитанной страницы, вы можете бесплатно читать онлайн книгу OpenCV от NemtyrevAI. Обнаружение объектов в компьютерном зрении, методы алгоритмы приложения + реальные примеры кода без необходимости искать место, на котором остановились. А еще, у нас можно настроить шрифт и фон для комфортного чтения. Наслаждайтесь любимыми книгами в любое время и в любом месте.
Текст книги
В шестой и седьмой главе создадим приложения для распознавания объектов.
Мы надеемся, что эта книга поможет вам получить основные знания в области обнаружения объектов в компьютерном зрении и применить их в реальных задачах. Мы также надеемся, что эта книга станет хорошим стартовым пунктом для будущих исследований в этой области.
В следующих главах мы будем детально рассматривать основные методы обнаружения объектов и способы их применения в реальных задачах.
Глава 2
Обзор традиционных методов обнаружения объектов
В этом разделе мы рассмотрим три традиционных метода обнаружения объектов: метод Хаара, метод гистограмм направленных градиентов (HOG) и метод деформируемых частей (DPM).
Метод Хаара
Метод Хаара был разработан Паулем Виола и Майклом Джонсом в 2001 году для обнаружения лиц на изображениях. Алгоритм основан на использовании интегральных изображений и Хааровских признаков для быстрого поиска объектов на изображении.
Интегральное изображение – это изображение, в котором каждый пиксель хранит сумму яркости всех пикселей в прямоугольнике, лежащем выше и слева от этого пикселя.
Хааровские признаки – это набор признаков, которые характеризуют текстуру изображения. Они были разработаны Альфредом Хааром в 1910 году и используются для обнаружения границ и углов на изображении. Хааровские признаки могут быть вычислены для любого размера окна, и это делает их удобными для использования в методе Хаара.
Для обнаружения объекта на изображении используется каскад классификаторов, каждый из которых основан на Хааровских признаках. Каждый классификатор отсеивает часть отрицательных примеров, и только объекты, которые прошли все классификаторы, считаются положительными примерами.
Иллюстрация 2.



