Главная » Детские книги » OpenCV от NemtyrevAI. Обнаружение объектов в компьютерном зрении, методы алгоритмы приложения + реальные примеры кода (сразу полная версия бесплатно доступна) NemtyrevAI читать онлайн полностью / Библиотека

OpenCV от NemtyrevAI. Обнаружение объектов в компьютерном зрении, методы алгоритмы приложения + реальные примеры кода

На нашем сайте вы можете читать онлайн «OpenCV от NemtyrevAI. Обнаружение объектов в компьютерном зрении, методы алгоритмы приложения + реальные примеры кода». Эта электронная книга доступна бесплатно и представляет собой целую полную версию без сокращений. Кроме того, доступна возможность слушать аудиокнигу, скачать её через торрент в формате fb2 или ознакомиться с кратким содержанием. Жанр книги — Детские книги, Школьные учебники, Школьные учебники по информатике. Кроме того, ниже доступно описание произведения, предисловие и отзывы читателей. Регулярные обновления библиотеки и улучшения функционала делают наше сообщество идеальным местом для любителей книг.

0 баллов
0 мнений
0 чтений

Автор

NemtyrevAI

Дата выхода

05 мая 2024

Краткое содержание книги OpenCV от NemtyrevAI. Обнаружение объектов в компьютерном зрении, методы алгоритмы приложения + реальные примеры кода, аннотация автора и описание

Прежде чем читать книгу целиком, ознакомьтесь с предисловием, аннотацией, описанием или кратким содержанием к произведению OpenCV от NemtyrevAI. Обнаружение объектов в компьютерном зрении, методы алгоритмы приложения + реальные примеры кода. Предисловие указано в том виде, в котором его написал автор (NemtyrevAI) в своем труде. Если нужная информация отсутствует, оставьте комментарий, и мы постараемся найти её для вас. Обратите внимание: Читатели могут делиться своими отзывами и обсуждениями, что поможет вам глубже понять книгу. Не забудьте и вы оставить свое впечатие о книге в комментариях внизу страницы.

Описание книги

Книга состоит из семи глав. В первой главе мы кратко обсудим основные концепции компьютерного зрения и задачи обнаружения объектов. Во второй главе мы рассмотрим традиционные методы обнаружения объектов, основанные на признаках, такие как метод Хаара и метод гистограмм направленных градиентов (HOG). В третьей главе мы обсудим современные методы обнаружения объектов, основанные на глубоком обучении, такие как R-CNN, Fast R-CNN, Faster R-CNN и YOLO. В четвертой главе мы рассмотрим способы усовершенствования методов обнаружения объектов, такие как использование предварительного обучения, ансамблевых методов и повышение качества данных. В пятой главе мы обсудим приложения обнаружения объектов в различных областях, таких как автономное вождение, видеонаблюдение, медицинская визуализация, управление производством и робототехника. В шестой и седьмой главе создадим приложения AI MEDIC для распознавания объектов.

OpenCV от NemtyrevAI. Обнаружение объектов в компьютерном зрении, методы алгоритмы приложения + реальные примеры кода читать онлайн полную книгу - весь текст целиком бесплатно

Перед вами текст книги, разбитый на страницы для удобства чтения. Благодаря системе сохранения последней прочитанной страницы, вы можете бесплатно читать онлайн книгу OpenCV от NemtyrevAI. Обнаружение объектов в компьютерном зрении, методы алгоритмы приложения + реальные примеры кода без необходимости искать место, на котором остановились. А еще, у нас можно настроить шрифт и фон для комфортного чтения. Наслаждайтесь любимыми книгами в любое время и в любом месте.

Текст книги

Шрифт
Размер шрифта
-
+
Межстрочный интервал

1: Пример каскада классификаторов в методе Хаара в реальной системе фиксации

Метод Хаара широко используется для обнаружения лиц, но он также может быть применён к другим классам объектов, таким как пешеходы, машины и т.д.

Метод гистограмм направленных градиентов (HOG)

Метод гистограмм направленных градиентов (HOG) был разработан Нилом Далала и Биллом Тримбаллом в 2005 году. Метод основан на использовании градиентов яркости для выделения силуэта объекта.

Алгоритм HOG состоит из нескольких этапов:

1.

 Выделение градиентов яркости для каждого пикселя на изображении.

2. Группировка пикселей в ячейки и вычисление гистограммы направленных градиентов для каждой ячейки.

3. Группировка ячеек в блоки и нормализация гистограмм направленных градиентов для каждого блока.

4. Выделение признаков из нормализованных гистограмм направленных градиентов.

Иллюстрация 2.2:

Гистограммы направленных градиентов характеризуют текстуру изображения и могут быть использованы для обнаружения объектов.

Для классификации объектов используется алгоритм поддержки векторов машин (SVM), который обучается на наборе положительных и отрицательных примеров.

Метод HOG широко используется для обнаружения объектов, таких как пешеходы и машины, и он является одним из самых эффективных методов обнаружения объектов на сегодняшний день.

Модель деформируемых деталей (DPM) – популярный алгоритм обнаружения объектов, который был представлен Педро Фельценшвалбом, Россом Гиршиком, Дэвидом Макаллестером и Девой Рамананом в 2010 году.

Алгоритм основан на модели деформируемых деталей, которая позволяет изменять форму объекта и поза.

Алгоритм DPM состоит из нескольких компонентов, включая экстрактор признаков, классификатор и модель деформируемых деталей. Экстрактор признаков отвечает за извлечение признаков из входного изображения, а классификатор используется для классификации этих признаков как принадлежащих объекту или.

Фон Модель деформируемых частей используется для моделирования формы и положения объекта, позволяя изменять внешний вид объекта.

Алгоритм DPM сначала извлекает признаки из входного изображения с помощью средства извлечения признаков, такого как гистограмма ориентированных градиентов (HOG) или сверточная нейронная сеть (CNN). Эти признаки затем передаются через классификатор, который обучен различать.

Добавить мнение

Ваша оценка

Кликните на изображение чтобы обновить код, если он неразборчив

Мнения

Еще нет комментариев о книге OpenCV от NemtyrevAI. Обнаружение объектов в компьютерном зрении, методы алгоритмы приложения + реальные примеры кода, и ваше мнение может быть первым и самым ценным! Расскажите о своих впечатлениях, поделитесь мыслями и отзывами. Ваш отзыв поможет другим читателям сделать правильный выбор. Не стесняйтесь делиться своим мнением!

Другие книги автора

Понравилась эта книга? Познакомьтесь с другими произведениями автора NemtyrevAI! В этом разделе мы собрали для вас другие книги, написанные вашим любимым писателем.

Похожие книги