На нашем сайте вы можете читать онлайн «OpenCV от NemtyrevAI. Обнаружение объектов в компьютерном зрении, методы алгоритмы приложения + реальные примеры кода». Эта электронная книга доступна бесплатно и представляет собой целую полную версию без сокращений. Кроме того, доступна возможность слушать аудиокнигу, скачать её через торрент в формате fb2 или ознакомиться с кратким содержанием. Жанр книги — Детские книги, Школьные учебники, Школьные учебники по информатике. Кроме того, ниже доступно описание произведения, предисловие и отзывы читателей. Регулярные обновления библиотеки и улучшения функционала делают наше сообщество идеальным местом для любителей книг.
OpenCV от NemtyrevAI. Обнаружение объектов в компьютерном зрении, методы алгоритмы приложения + реальные примеры кода

Автор
Дата выхода
05 мая 2024
Краткое содержание книги OpenCV от NemtyrevAI. Обнаружение объектов в компьютерном зрении, методы алгоритмы приложения + реальные примеры кода, аннотация автора и описание
Прежде чем читать книгу целиком, ознакомьтесь с предисловием, аннотацией, описанием или кратким содержанием к произведению OpenCV от NemtyrevAI. Обнаружение объектов в компьютерном зрении, методы алгоритмы приложения + реальные примеры кода. Предисловие указано в том виде, в котором его написал автор (NemtyrevAI) в своем труде. Если нужная информация отсутствует, оставьте комментарий, и мы постараемся найти её для вас. Обратите внимание: Читатели могут делиться своими отзывами и обсуждениями, что поможет вам глубже понять книгу. Не забудьте и вы оставить свое впечатие о книге в комментариях внизу страницы.
Описание книги
Книга состоит из семи глав. В первой главе мы кратко обсудим основные концепции компьютерного зрения и задачи обнаружения объектов. Во второй главе мы рассмотрим традиционные методы обнаружения объектов, основанные на признаках, такие как метод Хаара и метод гистограмм направленных градиентов (HOG). В третьей главе мы обсудим современные методы обнаружения объектов, основанные на глубоком обучении, такие как R-CNN, Fast R-CNN, Faster R-CNN и YOLO. В четвертой главе мы рассмотрим способы усовершенствования методов обнаружения объектов, такие как использование предварительного обучения, ансамблевых методов и повышение качества данных. В пятой главе мы обсудим приложения обнаружения объектов в различных областях, таких как автономное вождение, видеонаблюдение, медицинская визуализация, управление производством и робототехника. В шестой и седьмой главе создадим приложения AI MEDIC для распознавания объектов.
OpenCV от NemtyrevAI. Обнаружение объектов в компьютерном зрении, методы алгоритмы приложения + реальные примеры кода читать онлайн полную книгу - весь текст целиком бесплатно
Перед вами текст книги, разбитый на страницы для удобства чтения. Благодаря системе сохранения последней прочитанной страницы, вы можете бесплатно читать онлайн книгу OpenCV от NemtyrevAI. Обнаружение объектов в компьютерном зрении, методы алгоритмы приложения + реальные примеры кода без необходимости искать место, на котором остановились. А еще, у нас можно настроить шрифт и фон для комфортного чтения. Наслаждайтесь любимыми книгами в любое время и в любом месте.
Текст книги
между объектом и фоновыми признаками Классификатор выводит оценку для каждого признака, указывающую вероятность того, что признак принадлежит объекту.
Модель деформируемых частей затем используется для моделирования формы и положения объекта. Модель состоит из набора частей, каждая из которых связана с определенным местоположением и ориентацией. Части соединены пружинами, которые позволяют изменять форму объекта. и поза Модель обучена минимизировать разницу между прогнозируемой формой объекта и фактической формой объекта, а также разницу между прогнозируемой и фактической позой объекта.
После обучения модели ее можно использовать для обнаружения объектов на новых изображениях. Алгоритм сначала извлекает признаки из входного изображения с помощью экстрактора признаков. Затем эти признаки передаются через классификатор, который выводит оценку для каждого признака. Модель деформируемых частей затем используется для объединения оценок отдельных элементов в оценку всего объекта. Алгоритм ищет объект с наивысшей оценкой на изображении и возвращает ограничивающую рамку и метку класса для этого объекта.
Алгоритм DPM использовался для достижения самых современных результатов в нескольких тестах обнаружения объектов, включая наборы данных PASCAL VOC и ILSVRC. Алгоритм также широко используется в практических приложениях, таких как автономное вождение, наблюдение и робототехника.
Пример того, как алгоритм DPM можно использовать для обнаружения объектов на изображении:
import cv2
import numpy as np
from sklearn.
# Load the trained DPM model
model = joblib.load('dpm_model.pkl')
# Load the input image
img = cv2.imread('input.jpg')
# Convert the image to grayscale
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# Detect objects in the image using the DPM algorithm
rects = model.detect(gray, threshold=0.5)
# Draw the bounding boxes around the detected objects
for rect in rects:
x, y, w, h = rect
cv2.
# Display the output image
cv2.imshow('Output', img)
cv2.waitKey(0)
cv2.destroyAllWindows()
В этом примере мы сначала загружаем обученную модель DPM из файла. Затем загружаем входное изображение и преобразуем его в оттенки серого. Мы используем метод обнаружения () модели для обнаружения объектов на изображении и рисуем ограничивающие рамки вокруг него.



