На нашем сайте вы можете читать онлайн «Нейросети. Генерация изображений». Эта электронная книга доступна бесплатно и представляет собой целую полную версию без сокращений. Кроме того, доступна возможность слушать аудиокнигу, скачать её через торрент в формате fb2 или ознакомиться с кратким содержанием. Жанр книги — Знания и навыки, Компьютерная литература, ОС и сети. Кроме того, ниже доступно описание произведения, предисловие и отзывы читателей. Регулярные обновления библиотеки и улучшения функционала делают наше сообщество идеальным местом для любителей книг.
Нейросети. Генерация изображений

Автор
Дата выхода
11 августа 2023
Краткое содержание книги Нейросети. Генерация изображений, аннотация автора и описание
Прежде чем читать книгу целиком, ознакомьтесь с предисловием, аннотацией, описанием или кратким содержанием к произведению Нейросети. Генерация изображений. Предисловие указано в том виде, в котором его написал автор (Джейд Картер) в своем труде. Если нужная информация отсутствует, оставьте комментарий, и мы постараемся найти её для вас. Обратите внимание: Читатели могут делиться своими отзывами и обсуждениями, что поможет вам глубже понять книгу. Не забудьте и вы оставить свое впечатие о книге в комментариях внизу страницы.
Описание книги
В данной книге учитываются последние исследования и технологические достижения в области генеративных нейронных сетей. Автор предоставляет читателю практическое и глубокое понимание процесса создания нейросети для генерации изображений, а также вдохновляет на новые творческие подходы и исследования.
Нейросети. Генерация изображений читать онлайн полную книгу - весь текст целиком бесплатно
Перед вами текст книги, разбитый на страницы для удобства чтения. Благодаря системе сохранения последней прочитанной страницы, вы можете бесплатно читать онлайн книгу Нейросети. Генерация изображений без необходимости искать место, на котором остановились. А еще, у нас можно настроить шрифт и фон для комфортного чтения. Наслаждайтесь любимыми книгами в любое время и в любом месте.
Текст книги
Применение GAN в генерации изображений позволяет создавать реалистичные портреты людей, синтезировать фотографии природы или архитектуры, а также анимации и многое другое. Это имеет широкий спектр применений, от развлекательной индустрии и рекламы до медицинского исследования и симуляции. GAN также используются для улучшения разрешения изображений, что может быть полезно в обработке медицинских снимков или улучшении качества видео.
Рассмотрим пример простой реализации GAN для генерации реалистичных изображений с помощью библиотеки TensorFlow и Keras в Python.
```python
import numpy as np
import tensorflow as tf
from tensorflow.keras import layers
# Загрузка данных MNIST
(train_images, _), (_, _) = tf.keras.datasets.mnist.load_data()
train_images = train_images.reshape(train_images.shape[0], 28 * 28).
train_images = (train_images – 127.5) / 127.5 # Нормализация данных в диапазоне [-1, 1]
# Гиперпараметры
random_dim = 100
epochs = 10000
batch_size = 128
# Создание генератора
def build_generator():
model = tf.keras.Sequential()
model.add(layers.Dense(256, input_dim=random_dim))
model.add(layers.LeakyReLU(0.2))
model.add(layers.BatchNormalization())
model.add(layers.Dense(512))
model.add(layers.LeakyReLU(0.2))
model.
model.add(layers.Dense(1024))
model.add(layers.LeakyReLU(0.2))
model.add(layers.BatchNormalization())
model.add(layers.Dense(784, activation='tanh'))
model.add(layers.Reshape((28, 28)))
return model
# Создание дискриминатора
def build_discriminator():
model = tf.keras.Sequential()
model.add(layers.Flatten(input_shape=(28, 28)))
model.add(layers.Dense(1024))
model.add(layers.LeakyReLU(0.2))
model.add(layers.
model.add(layers.LeakyReLU(0.2))
model.add(layers.Dense(256))
model.add(layers.LeakyReLU(0.2))
model.add(layers.Dense(1, activation='sigmoid'))
return model
# Функции потерь и оптимизаторы
cross_entropy = tf.keras.losses.BinaryCrossentropy(from_logits=True)
def discriminator_loss(real_output, fake_output):
real_loss = cross_entropy(tf.ones_like(real_output), real_output)
fake_loss = cross_entropy(tf.








