На нашем сайте вы можете читать онлайн «Нейросети. Генерация изображений». Эта электронная книга доступна бесплатно и представляет собой целую полную версию без сокращений. Кроме того, доступна возможность слушать аудиокнигу, скачать её через торрент в формате fb2 или ознакомиться с кратким содержанием. Жанр книги — Знания и навыки, Компьютерная литература, ОС и сети. Кроме того, ниже доступно описание произведения, предисловие и отзывы читателей. Регулярные обновления библиотеки и улучшения функционала делают наше сообщество идеальным местом для любителей книг.
Нейросети. Генерация изображений

Автор
Дата выхода
11 августа 2023
Краткое содержание книги Нейросети. Генерация изображений, аннотация автора и описание
Прежде чем читать книгу целиком, ознакомьтесь с предисловием, аннотацией, описанием или кратким содержанием к произведению Нейросети. Генерация изображений. Предисловие указано в том виде, в котором его написал автор (Джейд Картер) в своем труде. Если нужная информация отсутствует, оставьте комментарий, и мы постараемся найти её для вас. Обратите внимание: Читатели могут делиться своими отзывами и обсуждениями, что поможет вам глубже понять книгу. Не забудьте и вы оставить свое впечатие о книге в комментариях внизу страницы.
Описание книги
В данной книге учитываются последние исследования и технологические достижения в области генеративных нейронных сетей. Автор предоставляет читателю практическое и глубокое понимание процесса создания нейросети для генерации изображений, а также вдохновляет на новые творческие подходы и исследования.
Нейросети. Генерация изображений читать онлайн полную книгу - весь текст целиком бесплатно
Перед вами текст книги, разбитый на страницы для удобства чтения. Благодаря системе сохранения последней прочитанной страницы, вы можете бесплатно читать онлайн книгу Нейросети. Генерация изображений без необходимости искать место, на котором остановились. А еще, у нас можно настроить шрифт и фон для комфортного чтения. Наслаждайтесь любимыми книгами в любое время и в любом месте.
Текст книги
zeros_like(fake_output), fake_output)
total_loss = real_loss + fake_loss
return total_loss
def generator_loss(fake_output):
return cross_entropy(tf.ones_like(fake_output), fake_output)
generator_optimizer = tf.keras.optimizers.Adam(learning_rate=0.0002, beta_1=0.5)
discriminator_optimizer = tf.keras.optimizers.Adam(learning_rate=0.0002, beta_1=0.5)
# Создание генератора и дискриминатора
generator = build_generator()
discriminator = build_discriminator()
# Функция обучения GAN
def train_gan():
for epoch in range(epochs):
# Генерация случайных векторов из латентного пространства
noise = np.
# Генерация сгенерированных изображений генератором
generated_images = generator(noise)
# Получение случайных реальных изображений из обучающего набора
image_batch = train_images[np.random.randint(0, train_images.shape[0], size=batch_size)]
# Сборка батча из реальных и сгенерированных изображений
X = np.
# Создание векторов меток для реальных и сгенерированных изображений
y_dis = np.zeros(2 * batch_size)
y_dis[:batch_size] = 0.9 # односторонний мягкий ярлык для гладкости
# Обучение дискриминатора на батче
discriminator.trainable = True
d_loss = discriminator.train_on_batch(X, y_dis)
# Обучение генератора
noise = np.random.normal(0, 1, size=[batch_size, random_dim])
y_gen = np.ones(batch_size)
discriminator.trainable = False
g_loss = gan.
if epoch % 100 == 0:
print(f"Epoch: {epoch}, Discriminator Loss: {d_loss}, Generator Loss: {g_loss}")
# Обучение GAN
gan = tf.keras.Sequential([generator, discriminator])
gan.compile(loss='binary_crossentropy', optimizer=generator_optimizer)
train_gan()
```
Код представляет собой простую реализацию генеративной сети (GAN) для генерации реалистичных изображений с использованием библиотек TensorFlow и Keras в Python.
1. Загрузка данных MNIST:
– Загружается набор данных MNIST с рукописными цифрами с помощью функции `tf.keras.datasets.mnist.load_data()`.
– Обучающие изображения сохраняются в переменной `train_images`, а метки классов (которые в данном случае не используются) – в переменной `_`.
– Изображения преобразуются в одномерный формат и нормализуются в диапазоне [-1, 1], чтобы облегчить обучение модели.
2.











