Главная » Знания и навыки » Оптимизация в Python (сразу полная версия бесплатно доступна) Джейд Картер читать онлайн полностью / Библиотека

Оптимизация в Python

На нашем сайте вы можете читать онлайн «Оптимизация в Python». Эта электронная книга доступна бесплатно и представляет собой целую полную версию без сокращений. Кроме того, доступна возможность слушать аудиокнигу, скачать её через торрент в формате fb2 или ознакомиться с кратким содержанием. Жанр книги — Знания и навыки, Компьютерная литература, Программы. Кроме того, ниже доступно описание произведения, предисловие и отзывы читателей. Регулярные обновления библиотеки и улучшения функционала делают наше сообщество идеальным местом для любителей книг.

0 баллов
0 мнений
0 чтений

Дата выхода

17 ноября 2023

Краткое содержание книги Оптимизация в Python, аннотация автора и описание

Прежде чем читать книгу целиком, ознакомьтесь с предисловием, аннотацией, описанием или кратким содержанием к произведению Оптимизация в Python. Предисловие указано в том виде, в котором его написал автор (Джейд Картер) в своем труде. Если нужная информация отсутствует, оставьте комментарий, и мы постараемся найти её для вас. Обратите внимание: Читатели могут делиться своими отзывами и обсуждениями, что поможет вам глубже понять книгу. Не забудьте и вы оставить свое впечатие о книге в комментариях внизу страницы.

Описание книги

Современное программирование в Python требует не только разработки эффективного и функционального кода, но и его оптимизации для достижения максимальной производительности. Эта книга раскрывает тему оптимизации в Python от введения в базовые понятия до понимания тонкостей оптимизации приложений. Почему оптимизация играет важную роль в разработке и какие инструменты доступны для измерения производительности вашего кода? Книга предлагает практические советы по улучшению кода, включая способы избегания лишних операций, правильное использование циклов и работу с памятью. Вы также узнаете, как применять кеширование и мемоизацию для улучшения производительности ваших приложений. Для разработчиков, работающих с многозадачностью и параллелизмом, книга предоставляет понимание того, как использовать потоки, процессы и асинхронное программирование для оптимизации приложений. Книга также рассматривает вопросы оптимизации баз данных и веб-приложений, предоставляя практические рекомендации.

Оптимизация в Python читать онлайн полную книгу - весь текст целиком бесплатно

Перед вами текст книги, разбитый на страницы для удобства чтения. Благодаря системе сохранения последней прочитанной страницы, вы можете бесплатно читать онлайн книгу Оптимизация в Python без необходимости искать место, на котором остановились. А еще, у нас можно настроить шрифт и фон для комфортного чтения. Наслаждайтесь любимыми книгами в любое время и в любом месте.

Текст книги

Шрифт
Размер шрифта
-
+
Межстрочный интервал

Результат будет зависеть от производительности вашей системы, но обычно вы увидите, что добавление элемента в начало `deque` будет выполняться намного быстрее, чем в обычном списке. `deque` оптимизирована для таких операций, и вы должны увидеть значительное ускорение по сравнению с обычным списком.

Измерение производительности поможет вам выбрать подходящую структуру данных или оптимизировать код для достижения лучшей производительности в вашем приложении.

3. Модуль `itertools`

Модуль `itertools` в Python предоставляет множество функций, которые упрощают создание и обработку итераторов.

Это может быть очень полезным при работе с большими наборами данных и выполнении итераций. Далее некоторые из наиболее полезных функций из этого модуля:

– `itertools.count(start, step)`: Эта функция создает бесконечный итератор, который генерирует числа, начиная с `start` и увеличиваясь на `step` с каждой итерацией.

– `itertools.cycle(iterable)`: Создает бесконечный итератор, который бесконечно повторяет элементы из `iterable`.

– `itertools.repeat(elem, times)`: Создает итератор, который возвращает элемент `elem` `times` раз.

– `itertools.chain(iterable1, iterable2, …)`: Объединяет несколько итерируемых объектов в один длинный итератор.

– `itertools.islice(iterable, start, stop, step)`: Возвращает срез итерируемого объекта, начиная с `start` и заканчивая до `stop` с шагом `step`.

– `itertools.filterfalse(predicate, iterable)`: Возвращает элементы итерируемого объекта, для которых функция `predicate` возвращает `False`.

– `itertools.groupby(iterable, key)`: Группирует элементы из итерируемого объекта на основе функции `key`.

– `itertools.product(iterable1, iterable2, …)`: Возвращает декартово произведение нескольких итерируемых объектов.

Давайте рассмотрим пример применения модуля `itertools` для оптимизации и измерения производительности кода. Предположим, у нас есть два больших списка, и мы хотим найти пересечение (общие элементы) между ними.

Мы можем использовать модуль `itertools` для этой задачи:

```python

import timeit

import itertools

# Создадим два больших списка

list1 = list(range(100000))

list2 = list(range(50000, 150000))

# Измерим время выполнения операции поиска пересечения с использованием цикла

def find_intersection_with_loop():

intersection = []

for item in list1:

if item in list2:

intersection.

Добавить мнение

Ваша оценка

Кликните на изображение чтобы обновить код, если он неразборчив

Мнения

Еще нет комментариев о книге Оптимизация в Python, и ваше мнение может быть первым и самым ценным! Расскажите о своих впечатлениях, поделитесь мыслями и отзывами. Ваш отзыв поможет другим читателям сделать правильный выбор. Не стесняйтесь делиться своим мнением!

Другие книги автора

Понравилась эта книга? Познакомьтесь с другими произведениями автора Джейд Картер! В этом разделе мы собрали для вас другие книги, написанные вашим любимым писателем.

Похожие книги