На нашем сайте вы можете читать онлайн «Оптимизация в Python». Эта электронная книга доступна бесплатно и представляет собой целую полную версию без сокращений. Кроме того, доступна возможность слушать аудиокнигу, скачать её через торрент в формате fb2 или ознакомиться с кратким содержанием. Жанр книги — Знания и навыки, Компьютерная литература, Программы. Кроме того, ниже доступно описание произведения, предисловие и отзывы читателей. Регулярные обновления библиотеки и улучшения функционала делают наше сообщество идеальным местом для любителей книг.
Оптимизация в Python

Автор
Дата выхода
17 ноября 2023
Краткое содержание книги Оптимизация в Python, аннотация автора и описание
Прежде чем читать книгу целиком, ознакомьтесь с предисловием, аннотацией, описанием или кратким содержанием к произведению Оптимизация в Python. Предисловие указано в том виде, в котором его написал автор (Джейд Картер) в своем труде. Если нужная информация отсутствует, оставьте комментарий, и мы постараемся найти её для вас. Обратите внимание: Читатели могут делиться своими отзывами и обсуждениями, что поможет вам глубже понять книгу. Не забудьте и вы оставить свое впечатие о книге в комментариях внизу страницы.
Описание книги
Современное программирование в Python требует не только разработки эффективного и функционального кода, но и его оптимизации для достижения максимальной производительности. Эта книга раскрывает тему оптимизации в Python от введения в базовые понятия до понимания тонкостей оптимизации приложений. Почему оптимизация играет важную роль в разработке и какие инструменты доступны для измерения производительности вашего кода? Книга предлагает практические советы по улучшению кода, включая способы избегания лишних операций, правильное использование циклов и работу с памятью. Вы также узнаете, как применять кеширование и мемоизацию для улучшения производительности ваших приложений. Для разработчиков, работающих с многозадачностью и параллелизмом, книга предоставляет понимание того, как использовать потоки, процессы и асинхронное программирование для оптимизации приложений. Книга также рассматривает вопросы оптимизации баз данных и веб-приложений, предоставляя практические рекомендации.
Оптимизация в Python читать онлайн полную книгу - весь текст целиком бесплатно
Перед вами текст книги, разбитый на страницы для удобства чтения. Благодаря системе сохранения последней прочитанной страницы, вы можете бесплатно читать онлайн книгу Оптимизация в Python без необходимости искать место, на котором остановились. А еще, у нас можно настроить шрифт и фон для комфортного чтения. Наслаждайтесь любимыми книгами в любое время и в любом месте.
Текст книги
append(item)
# Измерим время выполнения операции поиска пересечения с использованием itertools
def find_intersection_with_itertools():
intersection = list(itertools.filterfalse(lambda x: x not in list2, list1))
# Измерим время выполнения для поиска с использованием цикла
loop_time = timeit.timeit(find_intersection_with_loop, number=100)
print(f"Поиск с использованием цикла занял {loop_time:.6f} секунд")
# Измерим время выполнения для поиска с использованием itertools
itertools_time = timeit.
print(f"Поиск с использованием itertools занял {itertools_time:.6f} секунд")
```
Этот код измеряет время выполнения операции поиска пересечения между двумя списками с использованием цикла и с использованием `itertools`. Здесь мы используем функцию `itertools.filterfalse`, чтобы найти элементы, которые присутствуют в `list1`, но отсутствуют в `list2`. Мы выполняем каждую операцию поиска 100 раз и выводим результаты.
Вы увидите, что операция поиска с использованием `itertools` обычно выполняется быстрее, чем операция с использованием цикла, что позволяет улучшить производительность кода при работе с большими данными.
4. Модуль `functools`
Модуль `functools` в Python предоставляет полезные функции для оптимизации работы с функциями. Одной из наиболее важных функций этого модуля является `lru_cache`, которая позволяет кешировать результаты функций. Это может существенно повысить производительность функций, вызываемых многократно с одними и теми же аргументами.
Разберем пример использования `lru_cache` для оптимизации функции, вычисляющей факториал числа:
```python
import functools
# Декорируем функцию с lru_cache для кеширования результатов
@functools.lru_cache(maxsize=None)
def factorial(n):
if n == 0:
return 1
else:
return n factorial(n – 1)
# Теперь функция будет кешировать результаты
result1 = factorial(5) # Первый вызов, вычисляется и кешируется
result2 = factorial(5) # Второй вызов, результат взят из кеша, не вычисляется снова
print(result1) # Вывод: 120
print(result2) # Вывод: 120
```
В этом примере мы использовали `@functools.











