На нашем сайте вы можете читать онлайн «Искусственный интеллект. Машинное обучение». Эта электронная книга доступна бесплатно и представляет собой целую полную версию без сокращений. Кроме того, доступна возможность слушать аудиокнигу, скачать её через торрент в формате fb2 или ознакомиться с кратким содержанием. Жанр книги — Знания и навыки, Компьютерная литература, Программирование. Кроме того, ниже доступно описание произведения, предисловие и отзывы читателей. Регулярные обновления библиотеки и улучшения функционала делают наше сообщество идеальным местом для любителей книг.
Искусственный интеллект. Машинное обучение

Автор
Дата выхода
19 марта 2024
Краткое содержание книги Искусственный интеллект. Машинное обучение, аннотация автора и описание
Прежде чем читать книгу целиком, ознакомьтесь с предисловием, аннотацией, описанием или кратким содержанием к произведению Искусственный интеллект. Машинное обучение. Предисловие указано в том виде, в котором его написал автор (Джейд Картер) в своем труде. Если нужная информация отсутствует, оставьте комментарий, и мы постараемся найти её для вас. Обратите внимание: Читатели могут делиться своими отзывами и обсуждениями, что поможет вам глубже понять книгу. Не забудьте и вы оставить свое впечатие о книге в комментариях внизу страницы.
Описание книги
Исследуйте мир машинного обучения с этой книгой, предназначенной для тех, кто стремится погрузиться в фундаментальные принципы и передовые методы этой динамично развивающейся области. От введения в основные концепции до глубокого погружения в продвинутые техники и приложения, каждая глава представляет собой комплексное исследование, подкрепленное практическими примерами и советами. Будучи ориентиром как для начинающих, так и для опытных практиков, данная книга поможет вам освоить ключевые навыки, необходимые для эффективного применения методов машинного обучения в реальных задачах.
Искусственный интеллект. Машинное обучение читать онлайн полную книгу - весь текст целиком бесплатно
Перед вами текст книги, разбитый на страницы для удобства чтения. Благодаря системе сохранения последней прочитанной страницы, вы можете бесплатно читать онлайн книгу Искусственный интеллект. Машинное обучение без необходимости искать место, на котором остановились. А еще, у нас можно настроить шрифт и фон для комфортного чтения. Наслаждайтесь любимыми книгами в любое время и в любом месте.
Текст книги
Нейронные сети глубокого обучения (Deep Learning): Это подкласс нейронных сетей, который состоит из множества слоев нейронов, включая скрытые слои, обеспечивающие более высокую сложность обучения. Глубокие нейронные сети широко применяются в обработке изображений, обработке естественного языка, а также в других областях, где требуется высокий уровень анализа и понимания данных.
10. Наивный Байесовский классификатор (Naive Bayes Classifier): Этот метод основан на принципе теоремы Байеса и предполагает независимость признаков, что делает его быстрым и простым для обучения.
11. Метод главных компонент (Principal Component Analysis, PCA): Это метод для снижения размерности данных, сохраняя при этом наибольшее количество информации. PCA находит новые признаки (главные компоненты), которые являются линейными комбинациями исходных признаков и позволяют сократить количество признаков, сохраняя при этом основные характеристики данных.
12. Метод оптимизации гиперпараметров (Hyperparameter Optimization): Это процесс подбора наилучших гиперпараметров модели, которые не могут быть изучены во время обучения модели, но влияют на ее производительность. Методы оптимизации гиперпараметров помогают выбрать оптимальные значения для параметров модели, улучшая ее обобщающую способность и точность предсказаний.
Эти методы и алгоритмы представляют лишь часть широкого спектра техник и подходов, используемых в машинном обучении. В зависимости от конкретной задачи и характеристик данных, могут применяться различные комбинации этих методов для достижения оптимальных результатов.
1.3 Таксономия задач Машинного Обучения
1.3.1 Сверхвизионное разделение: обучение с учителем, без учителя и с подкреплением
Таксономия задач в машинном обучении относится к классификации задач в соответствии с их характеристиками и типами обучения, которые они включают.











