На нашем сайте вы можете читать онлайн «Искусственный интеллект. Машинное обучение». Эта электронная книга доступна бесплатно и представляет собой целую полную версию без сокращений. Кроме того, доступна возможность слушать аудиокнигу, скачать её через торрент в формате fb2 или ознакомиться с кратким содержанием. Жанр книги — Знания и навыки, Компьютерная литература, Программирование. Кроме того, ниже доступно описание произведения, предисловие и отзывы читателей. Регулярные обновления библиотеки и улучшения функционала делают наше сообщество идеальным местом для любителей книг.
Искусственный интеллект. Машинное обучение

Автор
Дата выхода
19 марта 2024
Краткое содержание книги Искусственный интеллект. Машинное обучение, аннотация автора и описание
Прежде чем читать книгу целиком, ознакомьтесь с предисловием, аннотацией, описанием или кратким содержанием к произведению Искусственный интеллект. Машинное обучение. Предисловие указано в том виде, в котором его написал автор (Джейд Картер) в своем труде. Если нужная информация отсутствует, оставьте комментарий, и мы постараемся найти её для вас. Обратите внимание: Читатели могут делиться своими отзывами и обсуждениями, что поможет вам глубже понять книгу. Не забудьте и вы оставить свое впечатие о книге в комментариях внизу страницы.
Описание книги
Исследуйте мир машинного обучения с этой книгой, предназначенной для тех, кто стремится погрузиться в фундаментальные принципы и передовые методы этой динамично развивающейся области. От введения в основные концепции до глубокого погружения в продвинутые техники и приложения, каждая глава представляет собой комплексное исследование, подкрепленное практическими примерами и советами. Будучи ориентиром как для начинающих, так и для опытных практиков, данная книга поможет вам освоить ключевые навыки, необходимые для эффективного применения методов машинного обучения в реальных задачах.
Искусственный интеллект. Машинное обучение читать онлайн полную книгу - весь текст целиком бесплатно
Перед вами текст книги, разбитый на страницы для удобства чтения. Благодаря системе сохранения последней прочитанной страницы, вы можете бесплатно читать онлайн книгу Искусственный интеллект. Машинное обучение без необходимости искать место, на котором остановились. А еще, у нас можно настроить шрифт и фон для комфортного чтения. Наслаждайтесь любимыми книгами в любое время и в любом месте.
Текст книги
В данном контексте три основных категории задач машинного обучения выделяются в свете их взаимодействия с данными:
Обучение с учителем (Supervised Learning)
Обучение с учителем (Supervised Learning) представляет собой один из основных типов задач в машинном обучении, при котором модель обучается на основе набора обучающих данных, где каждый пример данных сопровождается правильным ответом или меткой. Этот ответ обычно представляет собой целевую переменную, которую модель должна научиться предсказывать для новых данных.
Примерами задач классификации, решаемых с помощью обучения с учителем, являются определение категории электронного письма (спам или не спам), классификация изображений (например, определение, содержит ли изображение кошку или собаку) и определение типа опухоли на медицинских изображениях.
В случае регрессионных задач, также относящихся к обучению с учителем, модель обучается предсказывать непрерывную переменную на основе имеющихся данных.
Одним из ключевых преимуществ обучения с учителем является возможность получить точные предсказания для новых данных, если модель была правильно обучена на обучающем наборе данных. Однако важно обращать внимание на качество данных, правильное выбор признаков и модели, чтобы избежать переобучения или недообучения модели.
Давайте рассмотрим пример задачи классификации с использованием обучения с учителем: определение спама в электронных письмах.
Задача: Определить, является ли электронное письмо спамом или не спамом.
Обучающие данные: У нас есть набор обучающих данных, который состоит из множества электронных писем, каждое из которых имеет метку о том, является ли оно спамом или не спамом.
Признаки: Каждое письмо представлено набором признаков, таких как слова, фразы, частота встречаемости определенных слов или символов.
Модель: Для решения задачи классификации мы можем использовать алгоритм, такой как наивный байесовский классификатор или метод опорных векторов. В данном случае, давайте выберем наивный байесовский классификатор.











