На нашем сайте вы можете читать онлайн «Искусственный интеллект в прикладных науках. Медицина». Эта электронная книга доступна бесплатно и представляет собой целую полную версию без сокращений. Кроме того, доступна возможность слушать аудиокнигу, скачать её через торрент в формате fb2 или ознакомиться с кратким содержанием. Жанр книги — Знания и навыки, Компьютерная литература, Программирование. Кроме того, ниже доступно описание произведения, предисловие и отзывы читателей. Регулярные обновления библиотеки и улучшения функционала делают наше сообщество идеальным местом для любителей книг.
Искусственный интеллект в прикладных науках. Медицина

Автор
Дата выхода
31 марта 2024
Краткое содержание книги Искусственный интеллект в прикладных науках. Медицина, аннотация автора и описание
Прежде чем читать книгу целиком, ознакомьтесь с предисловием, аннотацией, описанием или кратким содержанием к произведению Искусственный интеллект в прикладных науках. Медицина. Предисловие указано в том виде, в котором его написал автор (Джейд Картер) в своем труде. Если нужная информация отсутствует, оставьте комментарий, и мы постараемся найти её для вас. Обратите внимание: Читатели могут делиться своими отзывами и обсуждениями, что поможет вам глубже понять книгу. Не забудьте и вы оставить свое впечатие о книге в комментариях внизу страницы.
Описание книги
Книга представляет собой всестороннее исследование влияния искусственного интеллекта на медицинскую практику и здравоохранение. Автор представляет читателям обширный обзор применения ИИ в различных областях медицины, начиная от диагностики заболеваний и прогнозирования эпидемий, и заканчивая разработкой лекарств, персонализированным лечением и медицинской робототехникой. Каждая глава представляет собой углубленное исследование конкретного аспекта использования ИИ в медицине, предлагая читателям обширный обзор успешных проектов, перспектив развития технологий и возможных вызовов. Этот исследовательский материал будет полезен для специалистов в области здравоохранения, исследователей, студентов медицинских учебных заведений и всех, кто интересуется современными тенденциями в медицинской науке и практике.
Искусственный интеллект в прикладных науках. Медицина читать онлайн полную книгу - весь текст целиком бесплатно
Перед вами текст книги, разбитый на страницы для удобства чтения. Благодаря системе сохранения последней прочитанной страницы, вы можете бесплатно читать онлайн книгу Искусственный интеллект в прикладных науках. Медицина без необходимости искать место, на котором остановились. А еще, у нас можно настроить шрифт и фон для комфортного чтения. Наслаждайтесь любимыми книгами в любое время и в любом месте.
Текст книги
Conv2D(128, (3, 3), activation='relu'),
layers.MaxPooling2D(2, 2),
layers.Flatten(),
layers.Dense(512, activation='relu'),
layers.Dense(1, activation='sigmoid')
])
# Компиляция модели
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
# Подготовка изображений для обучения и валидации с использованием генератора
train_datagen = ImageDataGenerator(rescale=1./255)
train_generator = train_datagen.flow_from_directory(
'/path/to/training_data',
target_size=(150, 150),
batch_size=20,
class_mode='binary'
)
validation_datagen = ImageDataGenerator(rescale=1.
validation_generator = validation_datagen.flow_from_directory(
'/path/to/validation_data',
target_size=(150, 150),
batch_size=20,
class_mode='binary'
)
# Обучение модели
history = model.fit(
train_generator,
steps_per_epoch=100,
epochs=30,
validation_data=validation_generator,
validation_steps=50
)
# Оценка качества модели
test_loss, test_acc = model.
print('\nТочность на валидационных данных:', test_acc)
```
Прежде чем запускать этот код, убедитесь, что у вас установлены необходимые библиотеки, такие как TensorFlow и keras. Кроме того, замените `'/path/to/training_data'` и `'/path/to/validation_data'` путями к вашим данным обучения и валидации соответственно.
Для установки библиотеки TensorFlow и keras воспользуйтесь следующими командами в терминале или командной строке, если вы используете pip:
```
pip install tensorflow
pip install keras
```
После установки библиотек вы можете использовать предыдущий код для обнаружения опухолей на рентгеновских снимках грудной клетки.
Рассмотрим этапы кода:
1. Импорт библиотек: Сначала мы импортируем необходимые библиотеки TensorFlow и Keras, а также классы ImageDataGenerator, который позволяет автоматически подготавливать изображения для обучения.
2. Создание модели сверточной нейронной сети (CNN): Мы создаем модель Sequential, которая представляет собой последовательную нейронную сеть.
3. Компиляция модели: Мы компилируем модель с помощью метода `compile()`, указывая оптимизатор (adam), функцию потерь (binary_crossentropy) и метрику (accuracy).
4.











