На нашем сайте вы можете читать онлайн «Искусственный интеллект в прикладных науках. Медицина». Эта электронная книга доступна бесплатно и представляет собой целую полную версию без сокращений. Кроме того, доступна возможность слушать аудиокнигу, скачать её через торрент в формате fb2 или ознакомиться с кратким содержанием. Жанр книги — Знания и навыки, Компьютерная литература, Программирование. Кроме того, ниже доступно описание произведения, предисловие и отзывы читателей. Регулярные обновления библиотеки и улучшения функционала делают наше сообщество идеальным местом для любителей книг.
Искусственный интеллект в прикладных науках. Медицина

Автор
Дата выхода
31 марта 2024
Краткое содержание книги Искусственный интеллект в прикладных науках. Медицина, аннотация автора и описание
Прежде чем читать книгу целиком, ознакомьтесь с предисловием, аннотацией, описанием или кратким содержанием к произведению Искусственный интеллект в прикладных науках. Медицина. Предисловие указано в том виде, в котором его написал автор (Джейд Картер) в своем труде. Если нужная информация отсутствует, оставьте комментарий, и мы постараемся найти её для вас. Обратите внимание: Читатели могут делиться своими отзывами и обсуждениями, что поможет вам глубже понять книгу. Не забудьте и вы оставить свое впечатие о книге в комментариях внизу страницы.
Описание книги
Книга представляет собой всестороннее исследование влияния искусственного интеллекта на медицинскую практику и здравоохранение. Автор представляет читателям обширный обзор применения ИИ в различных областях медицины, начиная от диагностики заболеваний и прогнозирования эпидемий, и заканчивая разработкой лекарств, персонализированным лечением и медицинской робототехникой. Каждая глава представляет собой углубленное исследование конкретного аспекта использования ИИ в медицине, предлагая читателям обширный обзор успешных проектов, перспектив развития технологий и возможных вызовов. Этот исследовательский материал будет полезен для специалистов в области здравоохранения, исследователей, студентов медицинских учебных заведений и всех, кто интересуется современными тенденциями в медицинской науке и практике.
Искусственный интеллект в прикладных науках. Медицина читать онлайн полную книгу - весь текст целиком бесплатно
Перед вами текст книги, разбитый на страницы для удобства чтения. Благодаря системе сохранения последней прочитанной страницы, вы можете бесплатно читать онлайн книгу Искусственный интеллект в прикладных науках. Медицина без необходимости искать место, на котором остановились. А еще, у нас можно настроить шрифт и фон для комфортного чтения. Наслаждайтесь любимыми книгами в любое время и в любом месте.
Текст книги
Подготовка данных с использованием генератора изображений: Мы создаем объекты ImageDataGenerator для обучающих и валидационных данных. Затем мы используем метод `flow_from_directory()`, чтобы загрузить изображения из указанного каталога, масштабировать их и разделить на пакеты.
5. Обучение модели: Мы обучаем модель с использованием метода `fit()`, передавая обучающий генератор, количество шагов обучения в каждой эпохе (steps_per_epoch), количество эпох (epochs), валидационный генератор и количество шагов валидации (validation_steps).
6. Оценка качества модели: После обучения мы оцениваем качество модели на валидационных данных с использованием метода `evaluate()` и выводим точность на валидационных данных.
Задача 2.
Написать код на Python, используя библиотеку scikit-learn, для обучения модели машинного обучения на медицинских данных и прогнозирования риска заболеваний на основе имеющихся параметров.
Программа должна выполнять следующие шаги:
1.
2. Разделить данные на признаки (независимые переменные) и целевую переменную (зависимую переменную).
3. Разделить данные на обучающий и тестовый наборы.
4. Инициализировать модель классификатора, например, случайного леса, с помощью библиотеки scikit-learn.
5. Обучить модель на обучающем наборе данных.
6. Произвести прогноз риска заболеваний на тестовом наборе данных с помощью обученной модели.
7. Оценить точность модели на тестовом наборе данных с помощью метрик, таких как accuracy_score.
```python
# Импорт необходимых библиотек
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score
# Загрузка данных
data = pd.read_csv('medical_data.csv')
# Разделение данных на признаки (X) и целевую переменную (y)
X = data.
y = data['disease']
# Разделение данных на обучающий и тестовый наборы
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Обучение модели случайного леса
model = RandomForestClassifier(n_estimators=100, random_state=42)
model.fit(X_train, y_train)
# Прогнозирование риска заболеваний на тестовом наборе
y_pred = model.











