На нашем сайте вы можете читать онлайн «Методика преподавания математики в начальной школе». Эта электронная книга доступна бесплатно и представляет собой целую полную версию без сокращений. Кроме того, доступна возможность слушать аудиокнигу, скачать её через торрент в формате fb2 или ознакомиться с кратким содержанием. Жанр книги — Знания и навыки, Научно-популярная литература. Кроме того, ниже доступно описание произведения, предисловие и отзывы читателей. Регулярные обновления библиотеки и улучшения функционала делают наше сообщество идеальным местом для любителей книг.
Методика преподавания математики в начальной школе

Дата выхода
10 апреля 2022
Краткое содержание книги Методика преподавания математики в начальной школе, аннотация автора и описание
Прежде чем читать книгу целиком, ознакомьтесь с предисловием, аннотацией, описанием или кратким содержанием к произведению Методика преподавания математики в начальной школе. Предисловие указано в том виде, в котором его написал автор (Teacher.elementary.school) в своем труде. Если нужная информация отсутствует, оставьте комментарий, и мы постараемся найти её для вас. Обратите внимание: Читатели могут делиться своими отзывами и обсуждениями, что поможет вам глубже понять книгу. Не забудьте и вы оставить свое впечатие о книге в комментариях внизу страницы.
Описание книги
Несколько лекций по методике преподавания математики составленные лучшими преподавателями.
Методика преподавания математики в начальной школе читать онлайн полную книгу - весь текст целиком бесплатно
Перед вами текст книги, разбитый на страницы для удобства чтения. Благодаря системе сохранения последней прочитанной страницы, вы можете бесплатно читать онлайн книгу Методика преподавания математики в начальной школе без необходимости искать место, на котором остановились. А еще, у нас можно настроить шрифт и фон для комфортного чтения. Наслаждайтесь любимыми книгами в любое время и в любом месте.
Текст книги
а) Если запись числа оканчивается нулем, то оно кратно 10. Число 260 оканчивается нулем. Следовательно, число 260 кратно 10.
б) Если запись числа оканчивается нулем, то оно кратно 10. Если число кратно 10, то оно четное. Следовательно, если запись числа оканчивается 0, то оно четное.
в) Если запись числа оканчивается нулем, то оно кратно 10. Число 263 не кратно 10. Следовательно, оно не оканчивается нулем.
II. Согласно определению, в дедуктивном умозаключении посылки и заключение находятся в отношении логического следования.
Важно знать, как строить такие умозаключения и проверять их правильность.
В логике считают, что правильность умозаключения определяется его формой и не зависит от его конкретного содержания входящих в него утверждений. Математика предлагает такие правила, соблюдая которые можно строить дедуктивные умозаключения. Эти правила называются правилами вывода или схемами дедуктивных умозаключений:
1.
В(а)
2. А(х) => В(х), В(а) – правило отрицания;
А(а)
3. А(х) => В(х), В(х) => С(х) – правило силлогизма.
А(х) => В(х)
В правиле заключения обозначены две посылки: А(х) => В(х) и А(а). Первую называют общей (это может быть определение, правило, теорема), а вторую – частной (она получается из условия А(х) при х = а).
Например:
Если запись числа х оканчивается цифрой 5, то число х делится на 5.
Данное умозаключение можно записать так – А(х) => В(х), А(а), где
А(х) – общая посылка – «запись числа х оканчивается цифрой 5», а
В(х) – «число х делится на 5»;
А(а) – частная посылка – «число 135 оканчивается цифрой 5», при х = 135;
В(а) – заключение – «число 135 делится на 5».
Для правила отрицания приведем такой пример:
Если запись числа х оканчивается цифрой 5, то число х делится на 5.
Это умозаключение можно записать так – А(х) => В(х), В(а), где:
А(х) => В(х) – общая посылка такая же, как и в первом случае – «запись числа х оканчивается цифрой 5, то число х делится на 5»;
В(а) – частная посылка – отрицание – «число 137 не делится на 5», при х = 137;
А(а) – заключение – отрицание – «число 137 не оканчивается цифрой 5».





