На нашем сайте вы можете читать онлайн «Машинное обучение. Погружение в технологию». Эта электронная книга доступна бесплатно и представляет собой целую полную версию без сокращений. Кроме того, доступна возможность слушать аудиокнигу, скачать её через торрент в формате fb2 или ознакомиться с кратким содержанием. Жанр книги — Знания и навыки, Компьютерная литература, Программирование. Кроме того, ниже доступно описание произведения, предисловие и отзывы читателей. Регулярные обновления библиотеки и улучшения функционала делают наше сообщество идеальным местом для любителей книг.
Машинное обучение. Погружение в технологию

Автор
Дата выхода
03 июня 2023
Краткое содержание книги Машинное обучение. Погружение в технологию, аннотация автора и описание
Прежде чем читать книгу целиком, ознакомьтесь с предисловием, аннотацией, описанием или кратким содержанием к произведению Машинное обучение. Погружение в технологию. Предисловие указано в том виде, в котором его написал автор (Артем Демиденко) в своем труде. Если нужная информация отсутствует, оставьте комментарий, и мы постараемся найти её для вас. Обратите внимание: Читатели могут делиться своими отзывами и обсуждениями, что поможет вам глубже понять книгу. Не забудьте и вы оставить свое впечатие о книге в комментариях внизу страницы.
Описание книги
Практическое руководство, предназначенное для всех, кто хочет войти в мир машинного обучения и освоить его основы. Авторы книги предлагают читателям увлекательное путешествие в эту захватывающую область, начиная с основных концепций и принципов машинного обучения и заканчивая практическими навыками построения и обучения моделей. Внутри книги читатели найдут понятные объяснения ключевых алгоритмов машинного обучения, таких как регрессия, классификация, кластеризация и глубокое обучение. Они узнают, как подготовить данные для обучения моделей, как выбрать и настроить подходящие алгоритмы, а также как оценивать и улучшать производительность моделей.
Машинное обучение. Погружение в технологию читать онлайн полную книгу - весь текст целиком бесплатно
Перед вами текст книги, разбитый на страницы для удобства чтения. Благодаря системе сохранения последней прочитанной страницы, вы можете бесплатно читать онлайн книгу Машинное обучение. Погружение в технологию без необходимости искать место, на котором остановились. А еще, у нас можно настроить шрифт и фон для комфортного чтения. Наслаждайтесь любимыми книгами в любое время и в любом месте.
Текст книги
Задачи обучения с подкреплением широко применяются для обучения агентов играть в компьютерные игры, управлять роботами и автономными транспортными средствами, управлять системами энергетики и многими другими приложениями, где необходимо принимать решения в динамической среде с целью достижения оптимальных результатов.
Задачи обработки естественного языка: в этих задачах модель работает с текстовыми данными, понимая и генерируя естественный язык. Это включает в себя задачи машинного перевода, анализа тональности, генерации текста и другие.
1. Машинный перевод: Это задача автоматического перевода текста с одного языка на другой. Модели машинного перевода обучаются понимать и генерировать тексты на разных языках, используя различные подходы, такие как статистический машинный перевод, нейронные сети и трансформеры.
2. Анализ тональности: Задача анализа тональности заключается в определении эмоциональной окраски текста, например, положительной, отрицательной или нейтральной.
3. Классификация текстов: Эта задача заключается в классификации текстовых документов по определенным категориям или темам. Модели могут классифицировать новости, электронные письма, социальные медиа и другие тексты на основе их содержания.
4. Извлечение информации: Задача извлечения информации заключается в автоматическом извлечении структурированных данных из текста, таких как именованные сущности, ключевые факты, даты и другая релевантная информация. Например, извлечение информации может быть использовано для автоматического заполнения баз данных или составления сводок новостей.
5. Генерация текста: В этой задаче модели обучаются генерировать новые текстовые данные на основе заданного контекста или условия.
Это лишь некоторые из задач, с которыми сталкиваются в обработке естественного языка. NLP играет важную роль в различных приложениях, включая автоматический перев
1.4 Принципы обучения с учителем и без учителя
Обучение с учителем и обучение без учителя являются двумя основными подходами в Машинном обучении.











