Главная » Знания и навыки » Машинное обучение. Погружение в технологию (сразу полная версия бесплатно доступна) Артем Демиденко читать онлайн полностью / Библиотека

Машинное обучение. Погружение в технологию

На нашем сайте вы можете читать онлайн «Машинное обучение. Погружение в технологию». Эта электронная книга доступна бесплатно и представляет собой целую полную версию без сокращений. Кроме того, доступна возможность слушать аудиокнигу, скачать её через торрент в формате fb2 или ознакомиться с кратким содержанием. Жанр книги — Знания и навыки, Компьютерная литература, Программирование. Кроме того, ниже доступно описание произведения, предисловие и отзывы читателей. Регулярные обновления библиотеки и улучшения функционала делают наше сообщество идеальным местом для любителей книг.

0 баллов
0 мнений
1 чтение

Дата выхода

03 июня 2023

Краткое содержание книги Машинное обучение. Погружение в технологию, аннотация автора и описание

Прежде чем читать книгу целиком, ознакомьтесь с предисловием, аннотацией, описанием или кратким содержанием к произведению Машинное обучение. Погружение в технологию. Предисловие указано в том виде, в котором его написал автор (Артем Демиденко) в своем труде. Если нужная информация отсутствует, оставьте комментарий, и мы постараемся найти её для вас. Обратите внимание: Читатели могут делиться своими отзывами и обсуждениями, что поможет вам глубже понять книгу. Не забудьте и вы оставить свое впечатие о книге в комментариях внизу страницы.

Описание книги

Практическое руководство, предназначенное для всех, кто хочет войти в мир машинного обучения и освоить его основы. Авторы книги предлагают читателям увлекательное путешествие в эту захватывающую область, начиная с основных концепций и принципов машинного обучения и заканчивая практическими навыками построения и обучения моделей. Внутри книги читатели найдут понятные объяснения ключевых алгоритмов машинного обучения, таких как регрессия, классификация, кластеризация и глубокое обучение. Они узнают, как подготовить данные для обучения моделей, как выбрать и настроить подходящие алгоритмы, а также как оценивать и улучшать производительность моделей.

Машинное обучение. Погружение в технологию читать онлайн полную книгу - весь текст целиком бесплатно

Перед вами текст книги, разбитый на страницы для удобства чтения. Благодаря системе сохранения последней прочитанной страницы, вы можете бесплатно читать онлайн книгу Машинное обучение. Погружение в технологию без необходимости искать место, на котором остановились. А еще, у нас можно настроить шрифт и фон для комфортного чтения. Наслаждайтесь любимыми книгами в любое время и в любом месте.

Текст книги

Шрифт
Размер шрифта
-
+
Межстрочный интервал

Обучение с учителем: в этом подходе модель обучается на основе обучающей выборки, которая состоит из пар "входные данные – выходные данные" или "характеристики – целевая переменная". Модель учится находить зависимости между входными данными и соответствующими выходными данными, что позволяет ей делать предсказания для новых данных. Примерами алгоритмов обучения с учителем являются линейная регрессия, логистическая регрессия, метод k ближайших соседей и градиентный бустинг. Примеры алгоритмов обучения с учителем, которые мы упомянули:

1.

      Линейная регрессия: Этот алгоритм используется для решения задач регрессии, где модель стремится предсказывать непрерывные числовые значения. Линейная регрессия моделирует линейную зависимость между входными признаками и целевой переменной.

2.      Логистическая регрессия: Этот алгоритм также используется в задачах классификации, но вместо предсказания числовых значений модель предсказывает вероятности принадлежности к определенным классам.

Логистическая регрессия обычно применяется для бинарной классификации.

3.      Метод k ближайших соседей (k-NN): Это простой алгоритм классификации и регрессии, основанный на принципе ближайших соседей. Модель классифицирует новый пример на основе ближайших к нему соседей из обучающей выборки.

4.      Градиентный бустинг: Этот алгоритм используется для задач классификации и регрессии и основан на комбинировании слабых прогнозов (например, деревьев решений) для создания более сильной модели.

Градиентный бустинг последовательно добавляет новые модели, корректируя ошибки предыдущих моделей.

Это только несколько примеров алгоритмов обучения с учителем, и в области Машинного обучения существует множество других алгоритмов и методов, которые можно применять в зависимости от конкретной задачи и типа данных.

Обучение без учителя: в этом подходе модель обучается на основе не размеченных данных, то есть данных без явно указанных выходных меток.

Цель состоит в том, чтобы найти скрытые закономерности, структуры или группы в данных. Задачи кластеризации и понижения размерности являются примерами обучения без учителя. В этом случае модель сама находит внутренние структуры в данных, не требуя явных ответов. Целью обучения без учителя является нахождение скрытых закономерностей, структур или групп в данных.

Некоторые из примеров задач обучения без учителя:

1.

Добавить мнение

Ваша оценка

Кликните на изображение чтобы обновить код, если он неразборчив

Мнения

Еще нет комментариев о книге Машинное обучение. Погружение в технологию, и ваше мнение может быть первым и самым ценным! Расскажите о своих впечатлениях, поделитесь мыслями и отзывами. Ваш отзыв поможет другим читателям сделать правильный выбор. Не стесняйтесь делиться своим мнением!

Другие книги автора

Понравилась эта книга? Познакомьтесь с другими произведениями автора Артем Демиденко! В этом разделе мы собрали для вас другие книги, написанные вашим любимым писателем.

Похожие книги