Главная » Знания и навыки » Машинное обучение. Погружение в технологию (сразу полная версия бесплатно доступна) Артем Демиденко читать онлайн полностью / Библиотека

Машинное обучение. Погружение в технологию

На нашем сайте вы можете читать онлайн «Машинное обучение. Погружение в технологию». Эта электронная книга доступна бесплатно и представляет собой целую полную версию без сокращений. Кроме того, доступна возможность слушать аудиокнигу, скачать её через торрент в формате fb2 или ознакомиться с кратким содержанием. Жанр книги — Знания и навыки, Компьютерная литература, Программирование. Кроме того, ниже доступно описание произведения, предисловие и отзывы читателей. Регулярные обновления библиотеки и улучшения функционала делают наше сообщество идеальным местом для любителей книг.

0 баллов
0 мнений
1 чтение

Дата выхода

03 июня 2023

Краткое содержание книги Машинное обучение. Погружение в технологию, аннотация автора и описание

Прежде чем читать книгу целиком, ознакомьтесь с предисловием, аннотацией, описанием или кратким содержанием к произведению Машинное обучение. Погружение в технологию. Предисловие указано в том виде, в котором его написал автор (Артем Демиденко) в своем труде. Если нужная информация отсутствует, оставьте комментарий, и мы постараемся найти её для вас. Обратите внимание: Читатели могут делиться своими отзывами и обсуждениями, что поможет вам глубже понять книгу. Не забудьте и вы оставить свое впечатие о книге в комментариях внизу страницы.

Описание книги

Практическое руководство, предназначенное для всех, кто хочет войти в мир машинного обучения и освоить его основы. Авторы книги предлагают читателям увлекательное путешествие в эту захватывающую область, начиная с основных концепций и принципов машинного обучения и заканчивая практическими навыками построения и обучения моделей. Внутри книги читатели найдут понятные объяснения ключевых алгоритмов машинного обучения, таких как регрессия, классификация, кластеризация и глубокое обучение. Они узнают, как подготовить данные для обучения моделей, как выбрать и настроить подходящие алгоритмы, а также как оценивать и улучшать производительность моделей.

Машинное обучение. Погружение в технологию читать онлайн полную книгу - весь текст целиком бесплатно

Перед вами текст книги, разбитый на страницы для удобства чтения. Благодаря системе сохранения последней прочитанной страницы, вы можете бесплатно читать онлайн книгу Машинное обучение. Погружение в технологию без необходимости искать место, на котором остановились. А еще, у нас можно настроить шрифт и фон для комфортного чтения. Наслаждайтесь любимыми книгами в любое время и в любом месте.

Текст книги

Шрифт
Размер шрифта
-
+
Межстрочный интервал

Обобщение означает способность модели делать предсказания для данных, которые она ранее не видела. Чем лучше модель обобщает данные, тем более эффективной она является. Обобщение достигается путем обучения на достаточно разнообразных и представительных данных, а также с использованием методов регуляризации, которые помогают контролировать сложность модели и избегать переобучения.

Машинное обучение имеет широкий спектр применений и используется во многих областях, включая компьютерное зрение, обработку естественного языка, рекомендательные системы, финансы, медицину и другие.

Прогресс и инновации в области Машинного обучения продолжают улучшать нашу способность анализировать и понимать данные, делать предсказания и принимать более информированные решения.

1.2 История Машинного обучения

История Машинного обучения насчитывает несколько десятилетий развития и прогресса. Одним из первых знаков возникновения Машинного обучения является появление линейной регрессии и метода наименьших квадратов в начале 19-го века.

Это был первый шаг к формализации процесса обучения моделей на основе данных.

В середине 20-го века появились первые искусственные нейронные сети, которые были вдохновлены биологическими нейронными сетями и работой мозга. Однако, развитие Машинного обучения замедлилось из-за ограниченных вычислительных ресурсов и сложностей в обучении глубоких нейронных сетей.

В конце 20-го и начале 21-го века произошел резкий прорыв в Машинном обучении.

С развитием вычислительной мощности и появлением больших объемов данных появилась возможность обучать сложные модели глубокого обучения. Алгоритмы глубокого обучения, такие как сверточные нейронные сети и рекуррентные нейронные сети, привели к значительным достижениям в областях компьютерного зрения, обработки естественного языка, рекомендательных систем и других областях.

Важным моментом в развитии Машинного обучения стало появление статистического подхода к обучению.

В середине 20-го века появились методы статистического обучения, включая линейную и логистическую регрессию, метод наименьших квадратов и метод максимального правдоподобия. Эти методы основывались на статистических принципах и позволяли делать предсказания на основе данных.

Еще одним важным этапом в истории Машинного обучения было развитие метода опорных векторов (Support Vector Machines, SVM) в 1990-х годах.

Добавить мнение

Ваша оценка

Кликните на изображение чтобы обновить код, если он неразборчив

Мнения

Еще нет комментариев о книге Машинное обучение. Погружение в технологию, и ваше мнение может быть первым и самым ценным! Расскажите о своих впечатлениях, поделитесь мыслями и отзывами. Ваш отзыв поможет другим читателям сделать правильный выбор. Не стесняйтесь делиться своим мнением!

Другие книги автора

Понравилась эта книга? Познакомьтесь с другими произведениями автора Артем Демиденко! В этом разделе мы собрали для вас другие книги, написанные вашим любимым писателем.

Похожие книги