На нашем сайте вы можете читать онлайн «Машинное обучение. Погружение в технологию». Эта электронная книга доступна бесплатно и представляет собой целую полную версию без сокращений. Кроме того, доступна возможность слушать аудиокнигу, скачать её через торрент в формате fb2 или ознакомиться с кратким содержанием. Жанр книги — Знания и навыки, Компьютерная литература, Программирование. Кроме того, ниже доступно описание произведения, предисловие и отзывы читателей. Регулярные обновления библиотеки и улучшения функционала делают наше сообщество идеальным местом для любителей книг.
Машинное обучение. Погружение в технологию

Автор
Дата выхода
03 июня 2023
Краткое содержание книги Машинное обучение. Погружение в технологию, аннотация автора и описание
Прежде чем читать книгу целиком, ознакомьтесь с предисловием, аннотацией, описанием или кратким содержанием к произведению Машинное обучение. Погружение в технологию. Предисловие указано в том виде, в котором его написал автор (Артем Демиденко) в своем труде. Если нужная информация отсутствует, оставьте комментарий, и мы постараемся найти её для вас. Обратите внимание: Читатели могут делиться своими отзывами и обсуждениями, что поможет вам глубже понять книгу. Не забудьте и вы оставить свое впечатие о книге в комментариях внизу страницы.
Описание книги
Практическое руководство, предназначенное для всех, кто хочет войти в мир машинного обучения и освоить его основы. Авторы книги предлагают читателям увлекательное путешествие в эту захватывающую область, начиная с основных концепций и принципов машинного обучения и заканчивая практическими навыками построения и обучения моделей. Внутри книги читатели найдут понятные объяснения ключевых алгоритмов машинного обучения, таких как регрессия, классификация, кластеризация и глубокое обучение. Они узнают, как подготовить данные для обучения моделей, как выбрать и настроить подходящие алгоритмы, а также как оценивать и улучшать производительность моделей.
Машинное обучение. Погружение в технологию читать онлайн полную книгу - весь текст целиком бесплатно
Перед вами текст книги, разбитый на страницы для удобства чтения. Благодаря системе сохранения последней прочитанной страницы, вы можете бесплатно читать онлайн книгу Машинное обучение. Погружение в технологию без необходимости искать место, на котором остановились. А еще, у нас можно настроить шрифт и фон для комфортного чтения. Наслаждайтесь любимыми книгами в любое время и в любом месте.
Текст книги
Машинное обучение. Погружение в технологию
Артем Демиденко
Искусственный Интеллект
Практическое руководство, предназначенное для всех, кто хочет войти в мир машинного обучения и освоить его основы. Авторы книги предлагают читателям увлекательное путешествие в эту захватывающую область, начиная с основных концепций и принципов машинного обучения и заканчивая практическими навыками построения и обучения моделей.Внутри книги читатели найдут понятные объяснения ключевых алгоритмов машинного обучения, таких как регрессия, классификация, кластеризация и глубокое обучение.
Артем Демиденко
Машинное обучение. Погружение в технологию
Глава 1: Основы Машинного обучения
1.1 Введение в Машинное обучение
Машинное обучение (Machine Learning) – это область искусственного интеллекта, которая изучает разработку алгоритмов и моделей, позволяющих компьютерам извлекать полезные знания из данных и принимать решения на основе этой информации.
Процесс обучения модели включает в себя несколько этапов. Сначала необходимо иметь обучающую выборку, которая состоит из пар «входные данные – выходные данные» или «характеристики – целевая переменная».
Цель обучения модели заключается в подгонке ее параметров на основе обучающей выборки таким образом, чтобы модель могла корректно обрабатывать новые данные и делать предсказания для них. Этот процесс достигается путем минимизации ошибки или разницы между предсказанными значениями и фактическими значениями в обучающей выборке.
Существует различные подходы и алгоритмы в Машинном обучении, включая линейную регрессию, логистическую регрессию, деревья решений, случайные леса, градиентный бустинг, нейронные сети и многое другое. Каждый из этих алгоритмов имеет свои особенности и применяется в зависимости от типа задачи и характеристик данных.
Одним из ключевых аспектов Машинного обучения является обобщение модели на новые данные.











