На нашем сайте вы можете читать онлайн «Формулы на все случаи жизни. Как математика помогает выходить из сложных ситуаций». Эта электронная книга доступна бесплатно и представляет собой целую полную версию без сокращений. Кроме того, доступна возможность слушать аудиокнигу, скачать её через торрент в формате fb2 или ознакомиться с кратким содержанием. Жанр книги — Знания и навыки, Научно-популярная литература. Кроме того, ниже доступно описание произведения, предисловие и отзывы читателей. Регулярные обновления библиотеки и улучшения функционала делают наше сообщество идеальным местом для любителей книг.
Формулы на все случаи жизни. Как математика помогает выходить из сложных ситуаций

Автор
Дата выхода
07 апреля 2022
Краткое содержание книги Формулы на все случаи жизни. Как математика помогает выходить из сложных ситуаций, аннотация автора и описание
Прежде чем читать книгу целиком, ознакомьтесь с предисловием, аннотацией, описанием или кратким содержанием к произведению Формулы на все случаи жизни. Как математика помогает выходить из сложных ситуаций. Предисловие указано в том виде, в котором его написал автор (Крис Уоринг) в своем труде. Если нужная информация отсутствует, оставьте комментарий, и мы постараемся найти её для вас. Обратите внимание: Читатели могут делиться своими отзывами и обсуждениями, что поможет вам глубже понять книгу. Не забудьте и вы оставить свое впечатие о книге в комментариях внизу страницы.
Описание книги
Представьте, что вы в падающем самолете. Без паники! Из сари вашей соседки можно сделать парашют и остаться в живых, надо лишь правильно рассчитать площадь материала. Это всего один пример того, как знание нужной формулы может пригодиться нам в самых неожиданных ситуациях. В копилке британского математика Криса Уоринга таких много, ведь он, как никто другой, умеет просто и с юмором объяснять сложные вещи. Уоринг написал эту книгу, чтобы рассказать о прелести и пользе уравнений на примере бытовых и экстраординарных событий – от расчета оптимальной схемы для охраны одного из шедевров Лувра до спасения человечества во время энергетического кризиса. Даже если вы не любили математику в школе, прочитайте эту книгу, чтобы полюбить формулы и научиться применять их в жизни.
Формулы на все случаи жизни. Как математика помогает выходить из сложных ситуаций читать онлайн полную книгу - весь текст целиком бесплатно
Перед вами текст книги, разбитый на страницы для удобства чтения. Благодаря системе сохранения последней прочитанной страницы, вы можете бесплатно читать онлайн книгу Формулы на все случаи жизни. Как математика помогает выходить из сложных ситуаций без необходимости искать место, на котором остановились. А еще, у нас можно настроить шрифт и фон для комфортного чтения. Наслаждайтесь любимыми книгами в любое время и в любом месте.
Текст книги
Но я написал несколько пояснений: они облегчат понимание тех вещей, которые вы, возможно, успели подзабыть со школьных времен. Уверены в собственных знаниях – пропускайте этот раздел. К нему можно будет вернуться, если вдруг поймете, что переоценили свои способности.
Порядок действий
Всякий раз, когда вы видите выражение, требующее вычислений – или операций, как это называют математики, – вам нужно определить последовательность шагов. В отличие от письма или чтения, где мы движемся слева направо, в математике необходимо следовать определенному порядку.
Вычисления следует производить согласно аббревиатуре BIDMAS[1 - Аббревиатура BIDMAS происходит от принятой в математике последовательности операций: brackets (скобки), indices (степени), division (деление), multiplication (умножение), addition (сложение), subtraction (вычитание). – Прим. пер.]:
Скобки
Возведение в степень
Деление
Умножение
Сложение
Вычитание
Например, выражение 5 – 3 + (2 ? 8) ? 4
содержит все шесть действий.
5 – 3 + 16 ? 4
.
Далее по плану возведение в степень («в степени n» означает «в n раз больше»). Такую степень мы видим над числом 4. 4
– это число 4, умноженное само на себя. Поскольку 4 ? 4 = 16, мы получаем:
5 – 3 + 16 ? 16.
Затем идет деление: 16 ? 16 = 1. Теперь наше выражение принимает вид:
5 – 3 + 1.
Сложение –3 и 1 дает нам –2:
5 – 2.
У нас на руках остается простое вычитание:
5 – 2 = 3.
Сокращение дробей
Эквивалентность дробей – важное понятие: это означает, что дроби, пусть и записанные по-разному, могут соответствовать одному и тому же числу. Например, как мы знаем, одна вторая – то же самое, что и две четверти:
Дроби принято оставлять в несократимом виде, то есть использовать наименьший возможный знаменатель (число под чертой) при целом числителе (число над чертой).
Если бы у нас было восемь двенадцатых, мы могли бы разделить числитель и знаменатель на 2 или на 4.





