На нашем сайте вы можете читать онлайн «Формулы на все случаи жизни. Как математика помогает выходить из сложных ситуаций». Эта электронная книга доступна бесплатно и представляет собой целую полную версию без сокращений. Кроме того, доступна возможность слушать аудиокнигу, скачать её через торрент в формате fb2 или ознакомиться с кратким содержанием. Жанр книги — Знания и навыки, Научно-популярная литература. Кроме того, ниже доступно описание произведения, предисловие и отзывы читателей. Регулярные обновления библиотеки и улучшения функционала делают наше сообщество идеальным местом для любителей книг.
Формулы на все случаи жизни. Как математика помогает выходить из сложных ситуаций

Автор
Дата выхода
07 апреля 2022
Краткое содержание книги Формулы на все случаи жизни. Как математика помогает выходить из сложных ситуаций, аннотация автора и описание
Прежде чем читать книгу целиком, ознакомьтесь с предисловием, аннотацией, описанием или кратким содержанием к произведению Формулы на все случаи жизни. Как математика помогает выходить из сложных ситуаций. Предисловие указано в том виде, в котором его написал автор (Крис Уоринг) в своем труде. Если нужная информация отсутствует, оставьте комментарий, и мы постараемся найти её для вас. Обратите внимание: Читатели могут делиться своими отзывами и обсуждениями, что поможет вам глубже понять книгу. Не забудьте и вы оставить свое впечатие о книге в комментариях внизу страницы.
Описание книги
Представьте, что вы в падающем самолете. Без паники! Из сари вашей соседки можно сделать парашют и остаться в живых, надо лишь правильно рассчитать площадь материала. Это всего один пример того, как знание нужной формулы может пригодиться нам в самых неожиданных ситуациях. В копилке британского математика Криса Уоринга таких много, ведь он, как никто другой, умеет просто и с юмором объяснять сложные вещи. Уоринг написал эту книгу, чтобы рассказать о прелести и пользе уравнений на примере бытовых и экстраординарных событий – от расчета оптимальной схемы для охраны одного из шедевров Лувра до спасения человечества во время энергетического кризиса. Даже если вы не любили математику в школе, прочитайте эту книгу, чтобы полюбить формулы и научиться применять их в жизни.
Формулы на все случаи жизни. Как математика помогает выходить из сложных ситуаций читать онлайн полную книгу - весь текст целиком бесплатно
Перед вами текст книги, разбитый на страницы для удобства чтения. Благодаря системе сохранения последней прочитанной страницы, вы можете бесплатно читать онлайн книгу Формулы на все случаи жизни. Как математика помогает выходить из сложных ситуаций без необходимости искать место, на котором остановились. А еще, у нас можно настроить шрифт и фон для комфортного чтения. Наслаждайтесь любимыми книгами в любое время и в любом месте.
Текст книги
Задача примет следующий вид:
3а + 8 = 7а,
затем из обеих частей вычтем 3a:
8 = 4а,
и, наконец, разделив и левую, и правую части на 4, получим ответ:
а = 2.
Этот метод прекрасно работает в приведенных выше линейных уравнениях – задачах с неизвестным без степени. Квадратные уравнения, то есть те, где подлежащее определению число возведено в квадрат, сложнее, поскольку у них может быть два, один или даже ни одного корня. И, хотя есть различные методы решения подобных задач, я, опустив подробности, просто предложу использовать для вычисления формулу ax
+ bx + c = 0.
Оставлю ее как вызов самому добросовестному из читателей. Пусть проверит!
Формулы
Формула – это способ показать математическую связь между величинами. Например, фут равен 30,48 см. Мы можем представить это следующей формулой:
c = 30,48f.
Буква f обозначает количество футов, c – количество сантиметров. Будь мы в США, где фут все еще остается стандартной единицей измерения длины, отношение помогло бы нам вычислить, сколько сантиметров в 6 футах.
c = 30,48 ? 6;
с = 182,88.
Итак, 6 футов – это 182,88 см.
В приведенном примере с – преобразуемое выражение. Если известна длина в сантиметрах, но ее следует перевести в дюймы, f нужно перенести в левую часть формулы, то есть должно получиться «f =». Действия будут напоминать решение уравнения. Чтобы вычислить c, мы умножали f на 30,48.
f = с ? 30,48.
Другими словами, если бы мы захотели узнать, сколько футов в 182,88 см, то разделили бы это число на 30,48, получив 6 футов.
Неравенства
Часто цель математических действий – удостовериться и показать, что x равно определенному числу. Но иногда подобная конкретика нежелательна или невозможна, поскольку есть необходимость рассмотреть диапазон значений. Именно для этого мы и прибегаем к неравенствам. Допустим, по опыту мне известно, что каждое воскресенье за обедом моя семья съедает больше 7, но до 12 картофелин.





