На нашем сайте вы можете читать онлайн «Секреты датасетов: практическое руководство по анализу и обработке данных». Эта электронная книга доступна бесплатно и представляет собой целую полную версию без сокращений. Кроме того, доступна возможность слушать аудиокнигу, скачать её через торрент в формате fb2 или ознакомиться с кратким содержанием. Жанр книги — Знания и навыки, Компьютерная литература, Программирование. Кроме того, ниже доступно описание произведения, предисловие и отзывы читателей. Регулярные обновления библиотеки и улучшения функционала делают наше сообщество идеальным местом для любителей книг.
Секреты датасетов: практическое руководство по анализу и обработке данных

Дата выхода
09 мая 2023
Краткое содержание книги Секреты датасетов: практическое руководство по анализу и обработке данных, аннотация автора и описание
Прежде чем читать книгу целиком, ознакомьтесь с предисловием, аннотацией, описанием или кратким содержанием к произведению Секреты датасетов: практическое руководство по анализу и обработке данных. Предисловие указано в том виде, в котором его написал автор (Виталий Александрович Гульчеев) в своем труде. Если нужная информация отсутствует, оставьте комментарий, и мы постараемся найти её для вас. Обратите внимание: Читатели могут делиться своими отзывами и обсуждениями, что поможет вам глубже понять книгу. Не забудьте и вы оставить свое впечатие о книге в комментариях внизу страницы.
Описание книги
"Секреты датасетов: практическое руководство по анализу и обработке данных" представляет собой всеобъемлющий и доступный ресурс для специалистов и начинающих исследователей данных. Книга охватывает ключевые аспекты работы с датасетами, начиная с источников данных, форматов и структур, и заканчивая предобработкой, анализом и визуализацией. Она предоставляет примеры работы с датасетами с использованием популярных языков программирования и библиотек, таких как Python, R, pandas и dplyr. Автор делится опытом и лучшими практиками по балансировке данных, аугментации, разделению датасета на обучающую, валидационную и тестовую выборки, а также исследовательскому анализу данных. Книга также освещает важные этические аспекты сбора данных и обработки персональных данных. Это практическое руководство подходит для всех, кто хочет улучшить свои навыки в работе с датасетами и получить ценные знания о современных подходах к анализу данных.
Секреты датасетов: практическое руководство по анализу и обработке данных читать онлайн полную книгу - весь текст целиком бесплатно
Перед вами текст книги, разбитый на страницы для удобства чтения. Благодаря системе сохранения последней прочитанной страницы, вы можете бесплатно читать онлайн книгу Секреты датасетов: практическое руководство по анализу и обработке данных без необходимости искать место, на котором остановились. А еще, у нас можно настроить шрифт и фон для комфортного чтения. Наслаждайтесь любимыми книгами в любое время и в любом месте.
Текст книги
Виталий Гульчеев
Глава 1: Введение в датасеты
1.1 Определение и основные понятия
Датасет (от англ. dataset, «набор данных») – это структурированная коллекция данных, используемая для анализа, обработки или обучения моделей машинного обучения. Датасет состоит из наблюдений (экземпляров) и признаков (характеристик), которые описывают каждое наблюдение. В контексте машинного обучения наблюдения называются объектами, а признаки – переменными или атрибутами.
Рассмотрим пример датасета с информацией о погоде:
В данном примере каждая строка – это наблюдение (день), а столбцы – признаки (температура, влажность и осадки).
1.2 Важность датасетов в анализе данных и машинном обучении
Датасеты играют ключевую роль в анализе данных и машинном обучении, поскольку они являются основой для получения новых знаний и создания прогнозных моделей.
Важность датасетов в анализе данных:
Описательный анализ: датасеты позволяют выявить основные статистические закономерности, связи и зависимости между переменными.
Визуализация: с помощью датасетов можно создавать графические представления данных, что упрощает понимание сложных закономерностей и динамики изменений.
Поддержка принятия решений: анализ датасетов позволяет получить информацию, необходимую для принятия обоснованных решений на основе данных.
Важность датасетов в машинном обучении:
Обучение моделей: датасеты используются для обучения моделей машинного обучения, которые могут выполнять задачи классификации, регрессии, кластеризации и другие. Обучение моделей на качественных данных позволяет достичь высокой точности и обобщающей способности.
Валидация и тестирование: разделение датасета на обучающую, валидационную и тестовую выборки позволяет оценить качество модели, ее способность предсказывать результаты на новых данных, а также избежать переобучения.
Оптимизация гиперпараметров: с использованием датасетов можно настраивать гиперпараметры моделей для улучшения их производительности и точности.
Сравнение различных моделей: датасеты позволяют сравнивать разные алгоритмы машинного обучения, выбирая наиболее подходящий для конкретной задачи.











