На нашем сайте вы можете читать онлайн «Цифровое моделирование на C#». Эта электронная книга доступна бесплатно и представляет собой целую полную версию без сокращений. Кроме того, доступна возможность слушать аудиокнигу, скачать её через торрент в формате fb2 или ознакомиться с кратким содержанием. Жанр книги — Знания и навыки, Компьютерная литература, Книги о компьютерах. Кроме того, ниже доступно описание произведения, предисловие и отзывы читателей. Регулярные обновления библиотеки и улучшения функционала делают наше сообщество идеальным местом для любителей книг.
Цифровое моделирование на C#

Автор
Дата выхода
08 мая 2024
Краткое содержание книги Цифровое моделирование на C#, аннотация автора и описание
Прежде чем читать книгу целиком, ознакомьтесь с предисловием, аннотацией, описанием или кратким содержанием к произведению Цифровое моделирование на C#. Предисловие указано в том виде, в котором его написал автор (Дмитрий Павлов) в своем труде. Если нужная информация отсутствует, оставьте комментарий, и мы постараемся найти её для вас. Обратите внимание: Читатели могут делиться своими отзывами и обсуждениями, что поможет вам глубже понять книгу. Не забудьте и вы оставить свое впечатие о книге в комментариях внизу страницы.
Описание книги
Эта книга представляет собой доступное введение в практические вопросы цифрового моделирования. В книге присутствует множество иллюстраций, подача материала чередуется с увлекательными историческими и научно-популярными вставками. Все это делает книгу весьма оригинальной, интересной и легкой для восприятия. Книга ориентирована на старшеклассников, студентов, профессиональных разработчиков, а также для всех тех, для кого программирование является увлекательным хобби.
Цифровое моделирование на C# читать онлайн полную книгу - весь текст целиком бесплатно
Перед вами текст книги, разбитый на страницы для удобства чтения. Благодаря системе сохранения последней прочитанной страницы, вы можете бесплатно читать онлайн книгу Цифровое моделирование на C# без необходимости искать место, на котором остановились. А еще, у нас можно настроить шрифт и фон для комфортного чтения. Наслаждайтесь любимыми книгами в любое время и в любом месте.
Текст книги
Существует еще один подход к освещению как полигональных, так и других типов моделей. Если мы умеем вычислять значение цвета для произвольной точки объекта, то можно рассчитать освещенность для каждой точки модели. Это, так называемый, метод попиксельного освещения. Понятно, что он является наиболее ресурсоемким из всех. Этот метод может применяться в областях, где скорость расчета освещенности не так важна по сравнению с качеством – например, в мультипликации, где картинки подготавливаются заранее и не так важно, как долго отрисовывался конкретный кадр.
В качестве практической вставки посмотрим, как закрасить треугольник в соответствии с методом Гуро. В графической библиотеке GDI+ присутствует необходимый функционал, чтобы линейно интерполировать цвета между тремя вершинами. (см. листинг ниже)
Моделирование тумана
Вид модели зависит не только от того, какие источники света ее освещают, но и от наличия атмосферных эффектов, в частности, тумана.
В этой части урока мы научимся моделировать присутствие тумана на сцене. Мы смоделируем туман, который равномерно скрывает объекты в направлении глубины сцены. Действие такого тумана легко объяснить следующими словами: чем ближе к нам объект, тем более четко мы его видим и тем меньшее значение оказывает туман на цвета объекта, и наоборот, чем дальше объект, тем менее четко мы его видим и тем большее значение оказывает туман (его цвет) на то, каким мы видим объект.
Рассмотрим формулу, с помощью которой можно вычислять цвет 3D-модели в условиях тумана:
X
– цвет 3D-модели с учетом тумана.
F – цвет тумана (в природе, как правило, это белый цвет, но можно использовать и другие цвета).
R – расстояние от наблюдателя до объекта.
X – исходный цвет объекта, вычисленный например, по методу Фонга.
d – параметр тумана (плотность).
Как работает эта формула? Если R=0, то есть объект находится перед наблюдателем, тогда X
равно исходному цвету объекта. Если же устремить R в бесконечность, X
устремится к цвету тумана. Не стоит рассматривать эту формулу как некоторую каноническую и единственно правильную.









