Главная » Физика » Основы квантовых вычислений и базовые состояния кубитов. Формула (сразу полная версия бесплатно доступна) ИВВ читать онлайн полностью / Библиотека

Основы квантовых вычислений и базовые состояния кубитов. Формула

На нашем сайте вы можете читать онлайн «Основы квантовых вычислений и базовые состояния кубитов. Формула». Эта электронная книга доступна бесплатно и представляет собой целую полную версию без сокращений. Кроме того, доступна возможность слушать аудиокнигу, скачать её через торрент в формате fb2 или ознакомиться с кратким содержанием. Жанр книги — Физика. Кроме того, ниже доступно описание произведения, предисловие и отзывы читателей. Регулярные обновления библиотеки и улучшения функционала делают наше сообщество идеальным местом для любителей книг.

0 баллов
0 мнений
1 чтение

Автор

ИВВ

Жанр

Физика

Дата выхода

04 апреля 2024

Краткое содержание книги Основы квантовых вычислений и базовые состояния кубитов. Формула, аннотация автора и описание

Прежде чем читать книгу целиком, ознакомьтесь с предисловием, аннотацией, описанием или кратким содержанием к произведению Основы квантовых вычислений и базовые состояния кубитов. Формула. Предисловие указано в том виде, в котором его написал автор (ИВВ) в своем труде. Если нужная информация отсутствует, оставьте комментарий, и мы постараемся найти её для вас. Обратите внимание: Читатели могут делиться своими отзывами и обсуждениями, что поможет вам глубже понять книгу. Не забудьте и вы оставить свое впечатие о книге в комментариях внизу страницы.

Описание книги

«Основы квантовых вычислений и базовые состояния кубитов» — книга, которая представляет основные концепции и принципы квантовых вычислений. Изложение информации в краткой и доступной форме, с акцентом на базовые состояния кубитов. Идеальное введение в квантовые вычисления для начинающих исследователей и инженеров.

Основы квантовых вычислений и базовые состояния кубитов. Формула читать онлайн полную книгу - весь текст целиком бесплатно

Перед вами текст книги, разбитый на страницы для удобства чтения. Благодаря системе сохранения последней прочитанной страницы, вы можете бесплатно читать онлайн книгу Основы квантовых вычислений и базовые состояния кубитов. Формула без необходимости искать место, на котором остановились. А еще, у нас можно настроить шрифт и фон для комфортного чтения. Наслаждайтесь любимыми книгами в любое время и в любом месте.

Текст книги

Шрифт
Размер шрифта
-
+
Межстрочный интервал

4?3]

После вращения вокруг оси X на угол ?/3, состояние кубита изменяется на [0.3?3 – 0.4i, -0.3i +0.4?3].

Создание и вращение матрицы Pauli Y

Описание матрицы Pauli Y

Матрица Pauli Y (Y-матрица) является одной из трех базисных матриц Паули и представляет операцию вращения вокруг оси Y. Она обычно обозначается как $\sigma_y$ или $Y$.

Матрица Pauli Y имеет следующий вид:

$Y = \begin {bmatrix} 0 & -i \\ i & 0 \end {bmatrix} $

Она является комплексно-сопряженной матрицей Pauli X (X-матрицы).

Это значит, что элементы матрицы Y получаются путем взятия комплексного сопряжения элементов матрицы X.

Матрица Pauli Y представляет операцию вращения вокруг оси Y на угол ? (180 градусов). В квантовой механике, вращение на угол ? вокруг оси Y обратит состояние кубита. Например, если у нас есть кубитное состояние |0?, после применения матрицы Pauli Y мы получим состояние |1?.

Вместе с X- и Z-матрицами, матрица Y используется для описания любых однокубитных вращений вокруг произвольной оси в трехмерном пространстве.

Например, вращение вокруг оси, направленной вдоль вектора единичной длины \ (\hat {n} = \sin (\theta) \cos (\phi) \hat {i} + \sin (\theta) \sin (\phi) \hat {j} + \cos (\theta) \hat {k} \), на угол ? может быть представлено как:

\ (R (\theta,\phi,\alpha) = \cos\left (\frac {\alpha} {2} \right) I – i \sin\left (\frac {\alpha} {2} \right) (\cos (\theta) X + \sin (\theta) \cos (\phi) Y + \sin (\theta) \sin (\phi) Z) \),

где I является единичной матрицей, а X, Y и Z – матрицами Паули.

Изменение матрицы Y вращением вокруг оси Y

Матрица Pauli Y описывает вращение вокруг оси Y на угол ? (180 градусов). Вращение вокруг оси Y может быть представлено с помощью матрицы поворота Яванского R_y (?).

Матрица поворота Яванского для вращения вокруг оси Y с углом ? имеет следующий вид:

R_y (?) = [[cos (?/2), -sin (?/2)],

[sin (?/2), cos (?/2)]]

В нашем случае, для вращения на угол ? вокруг оси Y, подставляем ? = ?:

R_y (?) = [[cos (?/2), -sin (?/2)],

[sin (?/2), cos (?/2)]]

= [[0, -1],

[1, 0]]

Матрица Pauli Y представляет вращение вокруг оси Y на угол ? и имеет вид:

Y = [[0, -i],

[i, 0]]

Чтобы изменить матрицу Pauli Y для вращения на произвольный угол вокруг оси Y, можно воспользоваться формулой Эйлера для квантовых гейтов поворота.

Добавить мнение

Ваша оценка

Кликните на изображение чтобы обновить код, если он неразборчив

Мнения

Еще нет комментариев о книге Основы квантовых вычислений и базовые состояния кубитов. Формула, и ваше мнение может быть первым и самым ценным! Расскажите о своих впечатлениях, поделитесь мыслями и отзывами. Ваш отзыв поможет другим читателям сделать правильный выбор. Не стесняйтесь делиться своим мнением!

Другие книги автора

Понравилась эта книга? Познакомьтесь с другими произведениями автора ИВВ! В этом разделе мы собрали для вас другие книги, написанные вашим любимым писателем.

Похожие книги