На нашем сайте вы можете читать онлайн «Криптографические горизонты с формулой F. Инновационные методы безопасности». Эта электронная книга доступна бесплатно и представляет собой целую полную версию без сокращений. Кроме того, доступна возможность слушать аудиокнигу, скачать её через торрент в формате fb2 или ознакомиться с кратким содержанием. Жанр книги — Физика. Кроме того, ниже доступно описание произведения, предисловие и отзывы читателей. Регулярные обновления библиотеки и улучшения функционала делают наше сообщество идеальным местом для любителей книг.
Криптографические горизонты с формулой F. Инновационные методы безопасности

Краткое содержание книги Криптографические горизонты с формулой F. Инновационные методы безопасности, аннотация автора и описание
Прежде чем читать книгу целиком, ознакомьтесь с предисловием, аннотацией, описанием или кратким содержанием к произведению Криптографические горизонты с формулой F. Инновационные методы безопасности. Предисловие указано в том виде, в котором его написал автор (ИВВ) в своем труде. Если нужная информация отсутствует, оставьте комментарий, и мы постараемся найти её для вас. Обратите внимание: Читатели могут делиться своими отзывами и обсуждениями, что поможет вам глубже понять книгу. Не забудьте и вы оставить свое впечатие о книге в комментариях внизу страницы.
Описание книги
Формулы F — это исчерпывающее руководство, посвященное применению формулы F в криптографии. Представляю подробное исследование оператора Адамара, операции сложения по модулю 2 и XOR, а также их влияния на преобразование входных данных и параметров вращения. Книга освещает уникальность и применение формулы F в криптографии, сравнивая её с другими методами. Руководство по применению формулы обеспечивает практическую и простую готовность к использованию.
Криптографические горизонты с формулой F. Инновационные методы безопасности читать онлайн полную книгу - весь текст целиком бесплатно
Перед вами текст книги, разбитый на страницы для удобства чтения. Благодаря системе сохранения последней прочитанной страницы, вы можете бесплатно читать онлайн книгу Криптографические горизонты с формулой F. Инновационные методы безопасности без необходимости искать место, на котором остановились. А еще, у нас можно настроить шрифт и фон для комфортного чтения. Наслаждайтесь любимыми книгами в любое время и в любом месте.
Текст книги
Определение операции сложения по модулю 2 и её свойства
Операция сложения по модулю 2 (также известная как побитовое сложение по модулю 2) является математической операцией, которая выполняется над двоичными числами по отдельности для каждого бита. Она имеет следующие свойства:
1. Замкнутость. Операция сложения по модулю 2 закрыта для двоичных чисел. Это означает, что результатом сложения двух двоичных чисел по модулю 2 также является двоичное число.
2. Коммутативность. Порядок слагаемых не влияет на результат операции сложения по модулю 2.
3. Ассоциативность. Результат сложения трех или более двоичных чисел по модулю 2 не зависит от их порядка. Например, (a + b) + c ? a + (b + c) для любых трех двоичных чисел a, b и c.
4. Идемпотентность. Если двоичное число складывается по модулю 2 с самим собой, то результат будет 0. Например, a + a ? 0 для любого двоичного числа a.
5.
6. Односторонняя обратимость. Операция сложения по модулю 2 обратима только для самого себя. Это означает, что если a + b ? c, то a остается единственным значением, которое можно восстановить, изменив только b и c.
Операция сложения по модулю 2 обычно используется в различных областях, связанных с цифровыми системами, криптографией, обработкой сигналов и протоколами передачи данных.
Как операция XOR работает и как она связана с операцией сложения по модулю 2
Операция XOR (исключающее ИЛИ) также является математической операцией, выполняющейся над двоичными числами. Она имеет следующие особенности:
1.
– Если два бита равны, результат XOR будет 0.
– Если два бита различны, результат XOR будет 1.
Например:
0 XOR 0 = 0
0 XOR 1 = 1
1 XOR 0 = 1
1 XOR 1 = 0
2. XOR для нескольких битов:
Операция XOR может выполняться над каждым битом двух двоичных чисел по отдельности. Если двоичные числа имеют одинаковую длину, то результат XOR для каждого соответствующего бита будет образовывать новое двоичное число.











