Главная » Математика » Математические модели в естественнонаучном образовании. Том I (сразу полная версия бесплатно доступна) Денис Владимирович Соломатин читать онлайн полностью / Библиотека

Математические модели в естественнонаучном образовании. Том I

На нашем сайте вы можете читать онлайн «Математические модели в естественнонаучном образовании. Том I». Эта электронная книга доступна бесплатно и представляет собой целую полную версию без сокращений. Кроме того, доступна возможность слушать аудиокнигу, скачать её через торрент в формате fb2 или ознакомиться с кратким содержанием. Жанр книги — Математика. Кроме того, ниже доступно описание произведения, предисловие и отзывы читателей. Регулярные обновления библиотеки и улучшения функционала делают наше сообщество идеальным местом для любителей книг.

0 баллов
0 мнений
0 чтений

Дата выхода

08 сентября 2022

Краткое содержание книги Математические модели в естественнонаучном образовании. Том I, аннотация автора и описание

Прежде чем читать книгу целиком, ознакомьтесь с предисловием, аннотацией, описанием или кратким содержанием к произведению Математические модели в естественнонаучном образовании. Том I. Предисловие указано в том виде, в котором его написал автор (Денис Владимирович Соломатин) в своем труде. Если нужная информация отсутствует, оставьте комментарий, и мы постараемся найти её для вас. Обратите внимание: Читатели могут делиться своими отзывами и обсуждениями, что поможет вам глубже понять книгу. Не забудьте и вы оставить свое впечатие о книге в комментариях внизу страницы.

Описание книги

Начало XXI века ознаменовано выходом в свет прекрасной книги Mathematical Models in Biology An Introduction / Elizabeth S. Allman, University of Southern Maine, John A. Rhodes, Bates College, Maine, содержащей обзор достижений века предшествующего, которая легла в основу данного издания, поэтому если уже знакомы с ней, то мне вас практически нечем удивить. В противном случае – добро пожаловать в чудесный мир тесного переплетения идей биологии, криптографии, абстрактной общей алгебры, конкретной дискретной математики и вероятностной математической статистики, на пользу бурно развивающейся ныне биоматематики. Хотите узнать в чём практический смысл вычисления собственных значений и собственных векторов матриц? Как определяется доля населения, которая должна быть успешно вакцинирована для обеспечения коллективного иммунитета? Как из структуры ДНК можно почерпнуть принципы СУВ? И много-многое другое? Тогда эта книга именно для вас.

Математические модели в естественнонаучном образовании. Том I читать онлайн полную книгу - весь текст целиком бесплатно

Перед вами текст книги, разбитый на страницы для удобства чтения. Благодаря системе сохранения последней прочитанной страницы, вы можете бесплатно читать онлайн книгу Математические модели в естественнонаучном образовании. Том I без необходимости искать место, на котором остановились. А еще, у нас можно настроить шрифт и фон для комфортного чтения. Наслаждайтесь любимыми книгами в любое время и в любом месте.

Текст книги

Шрифт
Размер шрифта
-
+
Межстрочный интервал

Если, с другой стороны, мы предположим, что на каждые сто человек приходится около четырех рождений в год, мы имеем

. Обратите внимание, что в этом случае мы выбрали год в качестве единиц времени.

Вопросы для самопроверки:

– Объясните, почему для любой популяции

 должно быть в диапазоне от 0 до 1.  Что будет означать

?  Что будет означать

?

– Объясните, почему

 должно быть не менее 0, но может быть больше 1. Можете ли вы назвать реальные популяции (при должном выборе единицы времени), для которых

 будет больше 1?

– Используя годы в качестве единицы времени, какие значения f и d будут уместны для моделирования числа выпускников естественно-научного профиля? Гуманитарного? Социально-экономического? Технологического и универсального?

Чтобы смоделировать значения P сфокусируемся на следующем за P изменении численности.

Формально

. Это означает, что, учитывая текущее значение

, скажем,

, а также

 и

, например,

 и

, можно предсказать изменение

.

Таким образом, в начале следующего временного периода суммарная численность составляет

.

Введём несколько вспомогательных обозначений для упрощения восприятия математической модели. Пусть

 – размер популяции, измеренный в момент времени

, тогда

 это приращение или изменение численности между последовательными моментами времени.

Ясно, что

 зависит от

, поэтому можно встретить подстрочный индекс

 рядом с

, так как для разных значений

 приращение

 оказывается разным.

Тем не менее, этот индекс не редко пропускают.

Теперь то, что нас в конечном итоге волнует, это понимание динамики популяции

, а не только приращения

. Но

. Объединив константы вместе, обозначив за

, модель стала гораздо проще:

.

Популяризаторы науки часто называют константу

 конечной скоростью роста населения. (Слово «конечный» используется, чтобы отличить это число от любого вида мгновенной скорости, которая включала бы производную, как вы знаете из курса дифференциального исчисления.

Для значений

,

, и

 использованных ранее, вся модель теперь имеет вид

, где

. Первое уравнение, выражающее

 через

, называется разностным уравнением, а второе, задающее

, является его начальным условием.  С этими двумя уравнениями легко составить таблицу значений численности

 с течением времени, как в таблице 1.1.

Добавить мнение

Ваша оценка

Кликните на изображение чтобы обновить код, если он неразборчив

Мнения

Еще нет комментариев о книге Математические модели в естественнонаучном образовании. Том I, и ваше мнение может быть первым и самым ценным! Расскажите о своих впечатлениях, поделитесь мыслями и отзывами. Ваш отзыв поможет другим читателям сделать правильный выбор. Не стесняйтесь делиться своим мнением!

Другие книги автора

Понравилась эта книга? Познакомьтесь с другими произведениями автора Денис Владимирович Соломатин! В этом разделе мы собрали для вас другие книги, написанные вашим любимым писателем.

Похожие книги