Главная » Математика » Математические модели в естественнонаучном образовании. Том I (сразу полная версия бесплатно доступна) Денис Владимирович Соломатин читать онлайн полностью / Библиотека

Математические модели в естественнонаучном образовании. Том I

На нашем сайте вы можете читать онлайн «Математические модели в естественнонаучном образовании. Том I». Эта электронная книга доступна бесплатно и представляет собой целую полную версию без сокращений. Кроме того, доступна возможность слушать аудиокнигу, скачать её через торрент в формате fb2 или ознакомиться с кратким содержанием. Жанр книги — Математика. Кроме того, ниже доступно описание произведения, предисловие и отзывы читателей. Регулярные обновления библиотеки и улучшения функционала делают наше сообщество идеальным местом для любителей книг.

0 баллов
0 мнений
0 чтений

Дата выхода

08 сентября 2022

Краткое содержание книги Математические модели в естественнонаучном образовании. Том I, аннотация автора и описание

Прежде чем читать книгу целиком, ознакомьтесь с предисловием, аннотацией, описанием или кратким содержанием к произведению Математические модели в естественнонаучном образовании. Том I. Предисловие указано в том виде, в котором его написал автор (Денис Владимирович Соломатин) в своем труде. Если нужная информация отсутствует, оставьте комментарий, и мы постараемся найти её для вас. Обратите внимание: Читатели могут делиться своими отзывами и обсуждениями, что поможет вам глубже понять книгу. Не забудьте и вы оставить свое впечатие о книге в комментариях внизу страницы.

Описание книги

Начало XXI века ознаменовано выходом в свет прекрасной книги Mathematical Models in Biology An Introduction / Elizabeth S. Allman, University of Southern Maine, John A. Rhodes, Bates College, Maine, содержащей обзор достижений века предшествующего, которая легла в основу данного издания, поэтому если уже знакомы с ней, то мне вас практически нечем удивить. В противном случае – добро пожаловать в чудесный мир тесного переплетения идей биологии, криптографии, абстрактной общей алгебры, конкретной дискретной математики и вероятностной математической статистики, на пользу бурно развивающейся ныне биоматематики. Хотите узнать в чём практический смысл вычисления собственных значений и собственных векторов матриц? Как определяется доля населения, которая должна быть успешно вакцинирована для обеспечения коллективного иммунитета? Как из структуры ДНК можно почерпнуть принципы СУВ? И много-многое другое? Тогда эта книга именно для вас.

Математические модели в естественнонаучном образовании. Том I читать онлайн полную книгу - весь текст целиком бесплатно

Перед вами текст книги, разбитый на страницы для удобства чтения. Благодаря системе сохранения последней прочитанной страницы, вы можете бесплатно читать онлайн книгу Математические модели в естественнонаучном образовании. Том I без необходимости искать место, на котором остановились. А еще, у нас можно настроить шрифт и фон для комфортного чтения. Наслаждайтесь любимыми книгами в любое время и в любом месте.

Текст книги

Шрифт
Размер шрифта
-
+
Межстрочный интервал

Таблица 1.1. Рост популяции по простой модели

Момент времени         Численность

0                                          500

1                                          (1. 07)500 = 535

2                                          (1. 07)

500 = 572.45

3                                          (1. 07)

500 ? 612.52

…                                         …

По закономерностям в таблице 1.1 легко перейти от рекуррентного соотношения для

 к замкнутой форме записи, чтобы осталась только зависимость от

 в явном виде:

.

На этой модели теперь легко предсказать численность популяции в любое время.

Может показаться странным называть

 разностным уравнением, когда разность

 там не появляется. Однако уравнения

 и

 эквивалентны, поэтому любое из них разумно определять одним и тем же термином.

Пример. Предположим, что система математического образования имеет очень жесткие ограничения на целевые цифры приёма в ВУЗы (что вполне реалистично на просторах СНГ), по которым каждый год выпускается 200 молодых специалистов и все сотрудники пенсионного возраста уходят на заслуженный отдых.

После того, как состоялся очередной выпуск, только 3% остаются работать по специальности, чтобы связать свою профессиональную деятельность с математикой, остальные либо эмигрируют, либо находят выше оплачиваемую работу. Чтобы написать разностное уравнение в этой системе, где будем измерять

 в поколениях, нужно просто заметить, что уровень «смертности» равен

, в то время как эффективная «плодовитость» системы равна

.

Следовательно,

.

Вопросы для самопроверки:

– Будет ли общая численность математиков расти, а не уменьшаться при таких условиях?

– Предположим, вы не знаете эффективной «плодовитости», но знаете, что численность

 стабильна (неизменна) с течением времени. Какой должна быть

? (Подсказка: поймите, что такое

, если численность стабильна?) Если каждый год выпускается 200 молодых специалистов, какая их часть должна оставаться в системе и обучать математиков следующего поколения?

Обратите внимание, что в этой последней модели мы игнорировали тех математиков, кто не участвует в обучении математиков следующего поколения.

Это на самом деле довольно распространенный подход и упрощает модель. Однако это означает, что делаются дополнительные предположения.

Добавить мнение

Ваша оценка

Кликните на изображение чтобы обновить код, если он неразборчив

Мнения

Еще нет комментариев о книге Математические модели в естественнонаучном образовании. Том I, и ваше мнение может быть первым и самым ценным! Расскажите о своих впечатлениях, поделитесь мыслями и отзывами. Ваш отзыв поможет другим читателям сделать правильный выбор. Не стесняйтесь делиться своим мнением!

Другие книги автора

Понравилась эта книга? Познакомьтесь с другими произведениями автора Денис Владимирович Соломатин! В этом разделе мы собрали для вас другие книги, написанные вашим любимым писателем.

Похожие книги